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THERMAL CONDUCTIVITY 
(ADVANCED THEORY) 

 
OBJECT: To determine the thermal conductivity of a thin 
slab of material of low conductivity. 

proportional to the thickness l, so that 
 
                         Q = KA θ1 −θ( )t l                                 (1)  

METHOD: A thin slab of a material whose thermal 
conductivity is to be measured is placed between an upper 
vessel kept at constant temperature and a lower insulated 
block of copper of known thermal properties. The heat 
conducted through the material raises the temperature of the 
copper block by a measured amount. Thermocouples and a 
galvanometer are used to indicate temperature differences. 
From the rate at which heat is conducted through the 
material, and the area, thickness and temperature difference 
of the faces of the specimen of material, its thermal 
conductivity is calculated. 

 

 
 
THEORY: Consider a uniform slab of material of thickness l 
and cross-sectional area A whose faces are at temperature 
θ 1 and θ 0 degrees where θ 1 is greater than θ 0. Heat is 
conducted through the slab from the face at the higher 
temperature to the face at the lower temperature. If the slab 
is thermally insulated so that no heat escapes from the 
sides, then the lines of heat flow are perpendicular to the 
faces and the rate of conduction is the same for all equal 
cross-sections.  
The quantity of heat Q conducted through the slab in time t 
is proportional to the time t, to the cross-sectional area A, to 
 

 
 
the temperature difference (θ 1 - θ ) and inversely 
 
 

Fig. 2. Thermal Conductivity Apparatus, with constant temperature source 
above the slab and receiver, and with connections to the galvanometer.
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where K, the constant of proportionality, is called the thermal 
conductivity of the material of the slab. In the cgs system of 
units Q is measured in calories, A in square centimeters, (θ 1 

- θ ) in centigrade degrees, t in seconds and l in centimeters. 
In this experiment, see Fig. 1, a thin slab S of material of low 
conductivity is placed between a hot source at constant 
temperature θ 1 and a heat receiver R consisting of a 
thermally insulated block of copper of known mass whose 
initial temperature θ  slowly changes. Suppose that in a 
small interval of time dt, the temperature of the copper block 
changes by an amount dθ  so that dθ /dt is its rate of 
increase of temperature. The heat received by the copper 
block per unit time Q/t is 
 
                            Q t = Mcdθ dt                                  (2) 
 
where M is the mass and c is the specific heat of the copper 
block. 
Let us first assume that no heat escapes from the copper 
block. Then the heat conducted through the slab, given by 
Eq. (1), is equal to the heat received by the copper block, 
Eq. (2), in a given time interval. Thus 
 
                     KA θ1 −θ( ) l = Mcdθ dt                         (3) 
 
The temperature difference between the source and the 
receiver is measured by a copper-constantan thermocouple 
and a microammeter or galvanometer, Fig. 2. If the 
temperature difference is small the current i produced by the 
thermocouple is proportional to the temperature difference, 
so that 



                              i = C θ1 − θ( )                                     (4) 

 

 
where C is a constant. From Eq. (4) it follows that 
 
                          di dt = −Cdθ dt                                  (5) 
 
since θ 1 is constant. By substitution of Eqs. (4) and (5) in 
Eq. (3) it follows that 

                              dt = −
lMc
KA

di
i

                                   (6) 

 
Integration of Eq. (6) gives 
 

                          t = −
lMc
KA

lni + K1                                (7) 

 
where ln i is the natural logarithm or the logarithm of i to 
base e and K1 is the constant of integration. If the initial 
conditions are i = io at time t = 0 then Eq. (7) gives  

The rate of increase of temperature θ  with time t, when the 
copper block is both receiving and losing heat, can be 
written as 

 

                             K1 =
lMc
KA

ln io                                     (8) 
                   dθ dt = m1 θ1 −θ( )−m2 θ − θa( )          (12) 

and Eq. (7) becomes 
  
where θ a is the temperature of the air, assumed constant; 
ml is given by Eq. (11) and m2 is another constant. Equation 
(12) may be written as 

                       t = −
lMc
KA

lni − lnio( )                             (9) 
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If logarithms to base 10 are used then, since ln 10 = 2.303 
approximately, it follows that Eq. (9) can be written as 
 

                 t = −2.303
lMc
KA

logi − logio( )                  (10)  
Substituting Eqs. (4) and (5) in Eq. (13) gives 
  
                 − dθ dt = m1 +m2( )i −m2io                      (14) where it is understood that "log" without subscript signifies 

that base 10 is used.  From Eq. (10) it follows that the graph of log i plotted against 
t should be a straight line. Such a graph may be plotted on 
ordinary linear graph paper using the logarithms of i 
corresponding to different values of t Fig. 3, or on semi-log 
graph paper using the values of i and t, Fig. 4. The slope m1 
of the graph of Fig. 3 is 

where io = C (θ 1 - θ a) and is the same io as used in Eq. (8) 
for at time zero, the temperature of the copper block is equal 
to the air temperature θ a. For convenience of integration Eq. 
(14) can be written as 

                         
di

i − m2io
m1 +m2

 
 
  

 
 

= − m1 + m2( dt)        (15)  

                      m1 =
log i
t

= −
KA

2.303lMc
                     (11) 

  
Integration of this equation gives From the experimental data it is seen that the graph of log i 

plotted against t is approximately a straight line for a time 
interval of about 10 minutes, Figs. 3 and 4, but for longer 
times the current i or log i deviates from a straight line and 
becomes constant as shown in Fig. 5a. This indicates that 
the assumption made in deriving Eq. (10), namely that the 
copper receiver does not lose any heat, is not valid. The 
copper block does lose heat despite its being surrounded by 
very low conducting material. Thus the copper block will 
reach a constant temperature when the rate at which it 
receives heat from the hot source is equal to the rate at 
which it loses heat to the outside air. 

 

             ln i − m2io
m1 + m2

 

 
  

 
 = − m1 + m2( )t + K2          (16) 

 
where K2 is the constant of integration and is obtained from 
the same initial condition used for K1, namely i = io when t = 
0. 
 
Hence 
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          K2 = ln io −
m2io
m1 + m2

 

 
  

 
 = ln

m1io
m1 +m2

 

 
  

 
         (17) 

and                                              
 

ln i − m2io
m1 + m2

 

 
  

 
 − ln

m1io
m1 +m2

 

 
  

 
 = − m1 + m2( )t    (18) 

 
 

Equation (18) can be written as 
 

             i −
m2io
m1 +m2

=
m1io
m1 +m2

e− m1 +m 2( t)

)

                 (19) 

 
As the time t becomes very large the negative exponential 
approaches zero and the current attains the steady value is 
given by 
                        is = m2io m1 + m2(                              (20) 
 
This is the steady value attained when the copper block is 
losing heat to the air at the same rate that it is receiving heat 
from the constant temperature source. Substituting Eq. (20) 
in Eq. (18) gives 
 
   ln i − is( )− ln m1io m1 +m2( )[ ]= − m1 +m2( )t     (21) 
 
or 
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If log (i - is) is plotted against t and the assumed conditions 
hold then a straight line should result. Such a straight line is 

shown in Fig. 5b, whereas Fig. 5a shows log i plotted against 
t. The slope of the straight line shown in Fig. 5b has the 
value of (m1 + m2). From Eq. (20) it follows that 
 
                    m1 = 1 − is io( ) m1 +m2( )                        (23) 
 
Thus if (m1 + m2) is measured then m1 can be obtained from 
Eq. (23) and the values of is and io which can be obtained 
from Fig. 5a. The value of m1 obtained from Eq. (23) should 
be more accurate than that obtained from Eq. (10) since the 
latter is only approximately correct. Having obtained the 
value of m1 the thermal conductivity K can be calculated 
from Eq. (11) using other known or measured quantities. 
 
APPARATUS: The apparatus essentially consists of two 
parts, the "source" or vessel which holds the liquid at 
constant temperature, and the "receiver" or the receptacle 
containing a heat-insulated copper plug. The source is 
essentially a copper vessel, heat insulated on the sides, with 
an extra-heavy base which is carefully ground and nickel-
plated. One junction of a copper-constantan thermal junction 
is embedded in the heavy copper base of this source and 
leads are brought to the binding posts on the sides of the 
vessel (Fig. 2). The constantan terminal is provided with a 
constantan lock-washer (gray) while the copper terminal is 
provided with a copper lock-washer. 
The receiver consists of a copper plug, face-ground and 
nickel-plated, carefully secured in a heat-insulated vessel. A 
second copper-constantan thermal junction is embedded in 
the copper plug and terminals brought out to binding posts in 
a manner similar to those used on the source. The mass M 
of the copper plug is stamped on the apparatus. A piece of 
constantan wire is provided for joining the constantan 
junctions on the source and receiver. A galvanometer having 
a linear scale is also necessary. Figure 2 shows the 
apparatus and galvanometer. Depending on the type of 
galvanometer used, series and shunt resistors may be 
necessary to keep the needle on the scale. A thin piece (less 
than one centimeter thick) of the material whose thermal 
conductivity is to be measured is required. The specimen 
should be uniform in thickness and may be glass, cork, 
blotting paper, wall board, etc. A micrometer caliper is 
needed for determining the thickness of the specimen and 
also a pair of calipers for determining the area A of the 
copper plug in the receiver. An immersion heater keeps the 
water boiling and thus establishes a constant source 
temperature. A large mass (about 5kg) is used on top of the 
source to keep the specimen in intimate contact with the 
source and receiver. 
 
PROCEDURE: 
Experimental: Connect the constantan wire to the 
constantan junction binding posts on the source and the 
receiver. Connect the copper binding posts with pieces of 
copper wire to the galvanometer terminals. The material to 
be tested is placed beneath the source vessel, but not on the 
receiver. The source vessel is filled with hot water and the 
immersion heater placed in it to maintain the water at a 
constant temperature. The receiver should be at 
approximately room temperature. If the galvanometer is too 
sensitive introduce a suitable series resistance to bring the 
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deflection onto the scale. When the galvanometer deflection 
is steady, the test sample and source are placed on the 
receiver. A heavy mass (about 5kg) should be placed on the 
top of the source vessel so as to prevent any air from 
forming between the sample and the source or receiver. The 
galvanometer deflection is then taken at regular intervals of 
two or three minutes for about 15 minutes and then every 5 
or 10 minutes for a total of about 2 hours. This long value is 
needed to obtain is with reasonable accuracy. Measure the 
thickness of the sample by means of the micrometer caliper, 
applying about the same pressure to the sample as used in 
the experiment. Measure the diameter of the copper plug on 
top of the receiver. 
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Analysis and Calculations. On semilog paper plot the 
graph of i against t, Fig. 5a, and from this obtain the steady 
value is. Use this value to construct a table of (i - is) values 
and plot this against ton semilog paper as shown in Fig. 5b. 
Obtain the slope (m1 + m2). Notice that in these graphs the 
values of i may be multiplied by any constant factor so that 
the i values fit on the graph paper, for this does not alter the 
slope of the line. 
The slope of the straight line on semilog paper can be 
obtained by choosing two values on the line and reading off 
the i and t values, then finding the log i or ln i values from a 
table of logarithms. The slope is then (logi2 – logi1)/(t2 – t1). 
Since distances on semilog scales are proportional to the 
logarithms of the numbers it follows that the slope of the 
straight line can be obtained by measurement. Measure the 
distance in centimeters between i2 and i1 corresponding to 
the times t2 and t1. The ratio of this distance to the length of 
one cycle measured in centimeters gives the (log i2 - log i1) 
and this divided by the time interval t2 - t1 gives the slope m1. 
Notice that the time must be given in seconds in calculating 

the thermal conductivity. From the value of (m1 + m2) 
obtained from the graph of log (i - is) calculate the value of 
m1, using the necessary constants and Eq. (24). 
Use the value of m1, the mass M, area A and specific heat c 
of the copper receiver, and the measured thickness of the 
slab of material used, calculate the thermal conductivity K. 
Optional Calculation: Plot the graph of log i against t on 
semilog paper for the first twenty minutes in which readings 
were taken. Find the slope m1 of the best straight line and 
calculate the thermal conductivity K from this value. 
 
QUESTIONS: 1. Would this type of apparatus be suitable for 
measuring the thermal conductivity of a good conductor such 
as copper? Explain. 
    2. Would an air film between the sample and the source or 
receiver appreciably affect the value obtained for the thermal 
conductivity of the sample? Would the value obtained for the 
thermal conductivity with an air film present be higher or 
lower than the true value for the material of the sample? 
    3. Could the thermal conductivity of a sample be 
determined by filling the source vessel with ice and water in 
place of boiling water? 
    4. Is it necessary that the two constantan junctions be 
connected together with constantan wire and constantan 
washers? Explain. 
    5. State the physical quantities which determine the value 
of m2 used in Eq. (12). 
    6. Convert your value of K to mks units. 


