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SPECIFIC HEAT OF LIQUIDS – RADIATION METHOD 
 

OBJECT: To determine the specific heat of a liquid by 
comparing its rate of cooling with the rate of cooling of water. 
 
METHOD: A polished metal cup is filled with the liquid 
whose specific heat is to be determined and a similar cup is 
filled with water. After being heated, these liquids are 
allowed to cool and a cooling curve is plotted for each. The 
length of time required for each liquid to fall through the 
same temperature range is determined from the curves and 
these times are used to determine the specific heat of the 
liquid. 
 
THEORY: In order to raise the temperature of a body, heat 
must be added to it and the quantity of heat H required is 
proportional to the mass m of the body and to the rise in 
temperature ∆T. Or, stated algebraically 
 
                            H = c ⋅ m ⋅ ∆T                                      (1) 
 
where the constant of proportionality c is called the specific 
heat of the material. Eq. (1) may be thought of as the 
defining equation of specific heat. In the metric system c is 
expressed in calories per gram per degree centigrade 
(cal/gm˚C) and is numerically equal to the number of calories 
of heat required to raise the temperature of one gram of the 
material one degree centigrade. The product c  is called 
the thermal capacity C of the body. Obviously C is 
expressed in calories per degree centigrade (cal/˚C) and is 
numerically equal to the quantity of heat required to raise the 
temperature of the body one-degree. Since m grams of any 
substance are thermally equivalent to  (or C) grams of 
water, the thermal capacity of a body is sometimes called 
the "water equivalent" of the body. When a body is 
composed of several kinds of materials, the quantity of heat 
required to produce a certain temperature change is most 
easily determined by adding the thermal capacities of the 
individual parts and multiplying the sum by the change in 
temperature. 

⋅ m

c ⋅ m

Any body not at absolute zero of temperature radiates 
energy. The rate R1 at which a body radiates energy 
depends upon the temperature of the body as well as the 
nature and area of the radiating surface. It may be shown 
that the heat energy radiated per second per unit area of 
surface is proportional to the fourth power of the absolute 
temperature; or 
                                R                                         (2) 1 = kAT1
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where T1 is the temperature of the body measured in 
degrees absolute, A is the area of the radiating surface, and 

k is a constant which depends upon the character of the 
surface. The law stated algebraically in Eq. (2) was first 
proposed by Stefan in 1879 on the basis of the meager data 
then available and was later derived from theoretical 
considerations by Boltzmann. It is known as the Stefan-
Boltzmann law. The value of k in Eq. (2) depends upon the 
units in which R1 and A are expressed. In the discussion that 
follows it is assumed that R1 is expressed in calories per 
second and A in square centimeters. 
If the body is completely surrounded by walls and other 
 

 
 

bodies at a temperature To, the rate Ro at which it absorbs 
energy from the surroundings is given by the equation 
 
                                Ro = kATo

4                                        (3) 
 
and the net rate R of loss of heat by radiation is given by 
 
                 R = R1 − Ro = kA T1

4 − To
4( )                        (4) 
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                        (9) 
Factoring Eq. (4) yields 
 
              R                (5) = kA T1

2 + To
2( )T1 + To( ) T1 − To( )  

 

 

and if T1 is only slightly larger than To Eq. (5) leads to the 
approximate relationship 
 
              R = 4kAT0

3 T1 − To( )= K T1 − To( )                 (6) 
 
where . Since k and A are constants, Eq. (6) 
shows that, if T

K = 4kATo
3

o remains constant, R is proportional to (T1 - 
To). Since under ordinary circumstances the rate at which a 
body radiates heat is proportional to the rate at which the 
temperature decreases (rate of cooling), Eq. (6) indicates 
that the rate of cooling of a body is proportional to the 
difference in temperature between the body and its 
surroundings. This law is known as Newton's law of cooling. 
Although this law is only an approximation to the truth and is 
not applicable when the temperature difference is large, it is 
sufficiently accurate in many practical situations and is 
widely used. 
In the discussion above only the heat lost by radiation was 
considered. Usually, in practice, heat is lost by convection 
and by conduction as well as by radiation. Experiment has 
shown, however, that when the temperature difference is 
small the net rate R' at which heat is lost by all three 
methods is proportional to the difference in temperature 
between a body and its surroundings. Assume that two 
vessels A and B having the same size, shape, and surface 
characteristics are surrounded by a water jacket as shown in 
Fig.1 and that the temperature of this water jacket does not 
vary. When A and B are at the same temperature, the rate at 
which heat is lost from the two vessels is the same, but this 
does not indicate that they have the same rate of cooling. If 
the thermal capacity of vessel A and its contents is greater 
than the thermal capacity of vessel B and its contents, the 
temperature of vessel A will fall less rapidly than vessel B. In 
fact, the difference in the rates of cooling may be used to 
compare the thermal capacities. 

 
If one of the cups contains water, or any other liquid for 
which the specific heat is known, Eq. (9) may be used to 
determine the specific heat of the other liquid. 
In the derivation of Eq. (9) it was assumed only that in this 
fixed temperature range the rate at which heat is lost from 
cup A is equal to the rate at which heat is lost from cup B. 
This should be true whether heat is lost only by radiation or 
whether it is lost by radiation, convection and conduction. It 
should also be noted that in the derivation of this equation 
Newton's law of cooling was not used and the validity of the 
equation is not affected by the approximations in this law. 

Typical cooling curves for cups containing approximately 
equal volumes of different liquids are shown in Fig. 2. It is 
evident from these curves that the time ∆tA required for cup 
A and its contents to cool through the temperature range ∆T 
is greater than the time required for cup Band its contents to 
cool through the same temperature range. The average rate 
R'A at which cup A loses heat in this range is given by the 
equation  
                  R ′ A = CA + cAmA( )∆T ∆tA                          (7) APPARATUS: A radiation calorimeter, two thermometers 

graduated to 50°C in one tenth degree divisions, one 
thermometer graduated in degrees, a beaker, a Bunsen 
burner, a stop watch and a balance are required. 

 
where CA is the thermal capacity of the cup and 
thermometer, mA is the mass of the liquid in the cup, and CA 
the specific heat of the liquid. The corresponding equation 
for cup B is 

The radiation calorimeter is illustrated in Fig. 3 and the 
arrangement of the various parts of this apparatus is shown 
in Fig. 1. Two brass vessels C and D supported by a strip of 
asbestos board S are suspended in the large outer copper 
vessel V which contains water at room temperature. A pair of 
nickel-plated and highly polished brass tubes A and b (called 

                  R ′ B = CB + cBmB( )∆T ∆tB                          (8) 
 
Since the surfaces of the two cups are alike and since they 
have fallen through the same temperature range ∆T, it 
follows that R'A = R'B and 
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 Fig. 3. The Radiation Calorimeter 

 
radiation tubes), extending into the brass vessels through 
holes in the asbestos board, contain the liquids under 
investigation. The temperatures of these liquids are read by 
means of the thermometers TA and TB. 
 
PROCEDURE: With the supporting strip S and the brass 
vessels C and D in position as shown in Fig. 1, fill the outer 
vessel V with water at room temperature. Weigh the tube A 
when empty and again when almost full of water. In a similar 
manner determine the weight of tube B when empty and 
when almost full of the liquid whose specific heat is to be 
determined. With the thermometers TA and TB supported by 
cork stoppers in the radiation tubes, place these tubes in a 
beaker of hot water until each tube and its contents reaches 
a temperature of approximately 50°C. When the proper 
temperature has been reached, remove the tubes from the 
hot water, dry the outside surfaces, and place them in the 
calorimeter as indicated in Fig. 1. Read each thermometer 
every two minutes until the temperature pas fallen at least 
15°C. Starting the stop watch when the first thermometer 
reading is taken, read one thermometer on the even minutes 
and the other thermometer on the odd minutes. Since one 
cup cools more slowly than the other, the temperature 
readings of the slow-cooling cup must be continued for a 
longer period of time. Note the temperature of the water in 
the large copper vessel V. 
Determine the thermal capacity of each radiation cup and 
each thermometer. The specific heat of the red brass from 
which the cups are made is 0.090cal/gm/˚C. Since glass is a 
poor conductor of heat, only that portion of the thermometer 
which was immersed in the liquid need be considered in 
calculating its thermal capacity. Although the specific heats 
of glass and mercury are quite different, fortunately equal 
volumes of these two materials have approximately the 
same thermal capacities (0.46cal/cm3˚C). The volume of the 
submerged portion of the thermometer may be determined in 
the following manner. Place one of the radiation tubes on the 
balance and weigh. Then, holding one of the thermometers 
in the hand, immerse it in the water to the same depth as in 
the experiment and observe the apparent increase in weight. 
The increase in weight in grams is numerically equal to the 
volume in cubic centimeters of the submerged portion of the 
thermometer. Repeat with the other thermometer. Compute 
the combined water equivalent of each cup and the 
corresponding thermometer. 
Plot the cooling curves for both cups in the manner indicated 
in Fig. 2. Choose some convenient temperature range ∆T 

and determine from the graph the time required for each cup 
to fall through this temperature range. Use Eq. (9) to 
compute the specific heat of the liquid. Repeat for at least 
two other temperature ranges. 
The data plotted in Fig. 2 may be used to check the validity 
of Newton's law of cooling. From this graph it is seen that 
11.6 minutes are required for the temperature of cup A to fall 
from 42°C to 38°C. The rate of cooling at an average 
temperature of approximately (why approximately?) 40°C is 
therefore 0.345 degree per minute. Apply this method to the 
curves previously constructed to determine the rate of 
cooling for at least four different temperatures for each cup. 
Plot a graph showing the relationship between rate of 
cooling and temperature for each cup. Interpret these 
curves. 
 
Optional: 1. For an ideal black body, one that absorbs all the 
radiation that falls on it and reflects none, k in Eqs. (2) to (6) 
is 1.36 x 10-12cal cm-2sec-1deg-4. Compare the rate of loss of 
heat from the polished metal cup used in this experiment 
with the radiation from an ideal black body at the same 
temperature. 
    2. Replace one of the polished metal cups with a similar 
cup finished in dead black, fill both cups with hot water, and 
plot a cooling curve for each. Interpret these curves. 
 
QUESTIONS: 1. Using Eq. (I) as a basis, define specific 
heat. 
    2. Why was the outer vessel in this experiment made to 
hold such a large quantity of water? 
    3. If the two thermometers used in this experiment have 
equal thermal capacities, may these thermal capacities be 
neglected? Explain. 
    4. The specific heat of a substance is numerically the 
same in the British system as in the metric system. Explain 
why. 
    5. A man is served coffee with his meal but does not wish 
to drink it until afterward. To keep the coffee from getting 
cold should he pour in the cream immediately or just before 
drinking? Give reasons. 
    6. Eq. (6) is used to compute R. What is the percentage 
error in this computation which is due to approximations in 
Eq. (6)? Assume that the temperature of the body is 47°C 
and that the temperature of the surroundings is 27°C. 
    7. What effects do the thermal conductivity and the 
viscosity of the liquids have on the results? 
    8. Justify Eq. (7). 


