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VISCOSITY OF A LIQUID 
 

OBJECT: To make an experimental determination of the 
viscosity of a liquid, and to study the variation of viscosity 
with temperature. 

 

 
METHOD: The liquid to be studied is contained in the space 
between two co-axial cylinders, the inner one being so 
arranged that it can be rotated by the action of a fall-in mass. 
The angular velocity of the rotary cylinder under the 
influence of a given torque depends upon the viscosity of the 
liquid and the geometry of the apparatus. From observations 
upon the times required for various masses to fall a 
measured distance, a curve is plotted from the slope of 
which and the constants of the apparatus the coefficient of 
viscosity is computed. The method, of course, is applicable 
only to liquids which adhere to the walls of the cylinders. 
With some modifications, the co-axial cylinder method can 
be used to measure the viscosity coefficient of gases. 

 
gradient) is a constant for a given fluid and is called the 
coefficient of viscosity, or simply the viscosity. Designating 
the coefficient by η , 

η

 
THEORY: The essential difference between solids and fluids 
lies in the nature of their response to a shearing stress. 
Whereas in the former, elastic forces place a limit upon the 
amount of shear produced by a given shearing stress, in the 
latter the deformation resulting from a constant shearing 
stress of any magnitude, however small, increases without 
limit. In other words, the shear modulus for fluids is zero and 
they may be said to offer no permanent resistance to shear. 
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Fluids do, however, differ in their rate of yield under the 
influence of a shearing stress. Common experience teaches, 
for example, that some liquids pour more readily than others. 
The movement of a fluid may be thought of as the slipping of 
adjacent layers over one another, and the internal friction 
between contiguous layers is called viscosity. Thus, while a 
fluid in motion resists a shearing stress with a frictional force 
which tends to retard the flow, this force disappears when 
the flow ceases and there exists no elastic force tending to 
restore the fluid to its original configuration. 

The velocity gradient is expressed more precisely in the 
calculus notation as the derivative of velocity with respect to 
distance. Thus 

                                 η =
F A
dv dr

                                     (1a) 

 
Another way of stating the definition is to define the 
coefficient of viscosity as numerically the tangential force per 
unit area in a fluid when two parallel surfaces at unit distance 
apart are slipping over one another with a relative velocity of 
unity. The c.g.s. unit of viscosity is called the poise; it is the 
viscosity of a substance that acquires a unit velocity gradient 
under the influence of a shearing stress of 1 dyne/cm2. 

In Fig. 1 let the parallelepiped represent a small element of 
volume in a fluid which is flowing horizontally. The shearing 
stress on this element of volume is F/A where F is the 
horizontal force on the top surface and A is the area of the 
horizontal cross section. For small deformations the shearing 
strain, or the amount of shear, is equal to the lateral 
displacement between two surfaces divided by the 
perpendicular distance between them. Thus, if v is the 
difference in velocity between the upper and lower faces, the 
amount of shear occurring in unit time is v/r. This term is also 
called the velocity gradient, since it is the variation in velocity 
of parallel layers with distance between them. For streamline 
motion (no turbulence the ratio between the shearing stress 
(tangential force per unit area) and the rate of shear (velocity 

The foregoing simple treatment is valid only when the 
volume concerned is of such size that the movement may be 
considered as taking place in parallel planes. In the co-axial 
cylinder method of determining the coefficient of viscosity, it 
is convenient to take as an element of volume a cylindrical 
section instead of a parallelepiped. The movement then 
consists of the rotation of concentric cylindrical layers about 
one another. In Fig. 2 let the dotted line SS’ represent an 
imaginary cylindrical boundary lying within the liquid 
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enclosed between the two cylinders A and B. For simplicity, 
consider the inner cylinder to be stationary and the outer one 

 

 
Integrating between the limits r = a and r = b gives 
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The coefficient η  is thus determined from the constants of 
the apparatus and from the experimentally determined 
ratio L ω B . The above treatment holds equally well 
regardless of which cylinder is rotated, since it is the relative 
velocity that is important. 
In the foregoing discussion it was assumed that the only 
viscous resistance involved is that exerted by the liquid 
between the cylindrical surfaces. However, when 
corresponding ends of both cylinders are closed there is an 
additional torque due to the viscous drag between the ends. 
The magnitude of this effect depends upon the radii of the 
two cylinders and the distance between their closed ends. 
While a mathematical expression for this factor in terms of 
the dimensions of the apparatus could be deduced, its 
precise formulation is complicated by the irregularity at the 
edges of the cylinders. The problem is simplified, however, 
when all dimensions of the apparatus are fixed, for then the 
end effect is a constant which can be treated as a correction 
to be made to the length of the cylinder. The effective length 
is then the immersed length l plus a factor e to be 
determined experimentally. Eq. (7) then becomes 

 
to rotate with an angular velocity ω B. If the liquid adheres to 
the walls of the cylinders, a shearing takes place in which 
concentric cylindrical layers of the liquid slip over each other, 
the angular velocity increasing progressively from zero at the 
stationary cylinder to ω B at the rotating one. The linear 
velocity of the intermediate surface SS' is v = ωr  where 
0〈ω 〈ω B . The velocity gradient at SS' is then 

                         
d
dr

ωr( ) = ω + r
dω
dr

                             (2) 

 
The first term on the right of the equality sign represents the 
rate of increase in v with r when all portions of the substance 
are moving with the same angular velocity, i.e., when no 
shearing takes place. When shearing occurs, however, each 
cylindrical layer has an angular velocity greater than that of 
the one just inside it; and the second term on the right 
represents the variation in v due to the variation in ω . In a 
rigid body this term would be zero; in a fluid it represents the 
velocity gradient due to relative movement of adjacent 
layers. Thus, while the complete expression for the velocity 
gradient of a rotating fluid contains two terms, only the 
second one is concerned with viscosity since it is the only 
one that involves relative movement of contiguous parts. 
Substituting this term in Eq. (1a) and separating the 
variables 
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APPARATUS: The viscosimeter employed in this 
experiment is illustrated in Fig. 3 and represented 
diagrammatically in Fig. 4. It consists essentially of two metal 
cylinders A and B of different radii mounted co-axially, one 
within the other, upon a rigid base. The inner cylinder A rests 
in bearings so as to rotate with very little bearing friction 
inside the stationary cylinder B, the liquid under investigation 
being contained in the space between the cylinders. 
Attached to the shaft of A is a drum D around which is 
wrapped a fine cord that passes over a pulley W and carries 
a mass m. The shearing torque is given by the product of the 
gravitational force on the mass m and the radius k of the 
drum. The resulting velocity is determined directly from the 
time required for the mass to descend a measured distance. 

                               η =
F A
rdω dr

                                     (3) 

or 
                        ηdω = F A( ) dr r( )                               (4) 
 
If the torque applied to the rotating cylinder is L, the 
tangential force sustained by the layer of liquid in contact 
with the cylinder is L/b, and that at any boundary SS' is L/r. 
Since the area of this cylindrical boundary is 2πrl , the 

tangential force per unit area is 
L

2πr2l
 where l is the length 

of cylinder in contact with the fluid. Substitution of this 
expression in Eq. (4) yields 

The removable cover C consists of an aluminum bracket 
which contains the upper bearing for the rotary cylinder. Two 
screw clamps N hold the bracket in place, accurately 
centering the shaft, the lower end of which rests in a cone 
bearing in the base of the outer cylinder. The cylinder A may 
be locked in position by means of a key K which enters a 
hole in the drum. One model of the viscosimeter is equipped 
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with an electrical heating element enclosed in a jacket 
surrounding the outer cylinder. 
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Castor oil and the ordinary motor oils make satisfactory 
specimens. Glycerin is unsatisfactory because it does not 
uniformly wet the cylinders. 
 
PROCEDURE: 
Experimental: 
A. Absolute Value of η : Place the apparatus on the edge 
of a table- or preferably, on a shelf some distance above the 
floor- so that the suspended mass has an uninterrupted fall 
of several feet. Instead of placing the apparatus on a high 
shelf, the distance of fall may be increased by means of the 
double-pulley arrangement shown in Fig. 5. Release the 
 
Fig. 3. Concentric Cylinder Viscosity Apparatus with auxiliary
 
 

relationship expressed by the general equation (8) may 
ritten in terms of the quantities directly measured in this 
riment. The shearing torque in absolute units is L= mgk, 
e g is the acceleration due to gravity. The angular 

ity is ω =
s
kt

, where s is the distance the mass 

ends in the time t. Substituting these relationships in Eq. 

               η =
b2 − a2( )k2g

4πa2b2s l + e( )
⋅mt                          (9) 

                           η = cmt                                        (10) 
e 

                  c =
b2 − a2( )k2g

4πa2b2s l + e( )
  

constant all factors of which can be measured directly 
the exception of the end correction e, which must be 
mined from an experimental curve. 
ddition to the viscosimeter the following auxiliary 
ment will be needed: Set of assorted weights of the 

ler denominations (5, 10, and 20gm), small weight 
r, vernier caliper, thermometer, small funnel, stop 

h, length of thread, and specimen of liquid to be tested. 

upper bearing bracket by loosening the screw clamps N and 
remove the inner cylinder. With the vernier caliper carefully 
measure and record the dimensions a, b, k and lo (Fig. 4). In 
handling the apparatus take care not to injure the cone 
bearing upon which the cylinder A rests. 

 
 
Reassemble the apparatus making sure that the lower end 
of the spindle is properly seated in its bearing. With a small 
funnel add liquid until the level is about 1.5cm above the 
lower end of the cylinder and measure the immersed length 
l. This is a difficult measurement to make and must be done 
carefully. One way is to make use of the depth gauge on a 
vernier caliper. The following is a simple and direct 
procedure: Withdraw the inner cylinder and, holding it so as 
to drain into the outer cylinder, make a pencil mark indicating 
the level of the liquid. Repeat this observation several times 
taking care to keep the cylinder A approximately centered 
when it is lowered into the liquid. Determine the average 
value of l.  
Replace the cover and lock it in place with the screws N. 
Take a length of thread slightly greater than necessary to 
reach the floor and loop one end of it over the small pin on 
the circumference of the drum D. Pass the thread over the 
pulley W and attach alight (5gm) weight holder to the end. 
Wind up the drum until the mass is as far from the floor as 
the arrangement will permit and lock the cylinder in place by 
means of the key K. 
Make the total suspended mass 20gm including the mass of 
the weight holder. Release the cylinder and take a trial fall, 
observing closely the motion of the descending mass. It will 
be noted the velocity increases quickly to a maximum value 
which is constant during the remainder of the fall. The 
frictional torque due to the viscosity of the liquid is then equal 
to the shearing torque produced by the gravitational force on 
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the descending mass. Set up an index I of some sort at a 
sufficient distance below the initial position of the mass to 
allow for the region of non-uniform velocity. Measure and 
record the distance s from the index to the floor. Take the 
temperature of the liquid and repeat the fall, observing the 
time required for the mass to traverse the measured 
distance. 
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Make a series of five determinations, keeping the mass 
constant and increasing the effective length of the cylinder 
by adding liquid. The last observation should be made with 
the apparatus filled just to the top of the inner cylinder. (A 
thin film of liquid on the top of the inner cylinder will not 
seriously affect the experiment.) Take the temperature again 
at the end of the run. Tabulate the data. 
With the level of the liquid at the top of the inner cylinder, 
take a series of six observations varying the mass from 10 to 
60gm. Take the temperature at the beginning and at the end 
of the run. Tabulate the data as before. 
 
B. Variation of η  with Temperature: In making this study, 
the model of viscosimeter which is equipped with an 
electrical heating unit is most convenient, although not 
absolutely necessary. With care the heating can be done by 
means of a flame gently played upon the outer cylinder. 
Caution: This product should not be employed when and 
inflammable liquid is being tested. 
Keeping the mass constant at 15 or 20gm, make a series of 
observations at increasing temperature up to the limit 
prescribed by the instructor. Take the temperature 
immediately before and after each fall and record the 
average value. The thermometer must, of course, be 
removed during the fall. If the liquid expands considerably in 
the temperature range covered, it may be necessary to 
remove a little with a pipette from time to time in order to 
keep the level constant. Continue the observations as the 
liquid cools down until a total of 10 or 12 points have been 
determined. 
 
Analysis of Data: Before η  can be calculated from Eq. 
(10), the end correction e which enters the constant c must 
be determined. This is obtained from the first set of data in 
part A. Eq. (9) shows that the time of descent for a constant 
mass is directly proportional to the effective length of the 
cylinder. Plot a curve (hereafter referred to as curve 1) with 
time of descent as the ordinate and immersed length of 
cylinder as the abscissa. Clearly, if the end effect were zero 
length should mean no frictional torque. The fact that t is not 
zero when l is zero indicates that the end of the cylinder is 
equivalent to a certain additional length. Extrapolate the 
curve until it meets the l-axis. The l-intercept then gives the 
value of the end correction e, which is a positive term to be 
added to the immersed length l to give the effective length 
(Fig. 6). 
From the second set of data in part A plot a curve (hereafter 
referred to as curve 2) with time of descent as the ordinate 
and reciprocal of mass as the abscissa. As Eq. (10) shows, 
this will yield a linear graph passing through the origin (Fig. 
7). The slope of this curve gives the average value of the 
product mt. 
Having determined the quantity mt from the slope of curve 2 
and the end correction e from the l-intercept of curve 1, 

substitute these values in Eq. (10) and compute the value 
ofη . 

 
 
Compare the value obtained with that given in an approved 
handbook and compute the percentage of difference. 
From the data of part B and the above determined value of c 
compute a series of values of η  and plot as a function of the 
temperature T. 

 
 
QUESTIONS: 1. Why are the values of η  obtained in part A 
more reliable than the values used in plotting the curve of 
part B? 
    2. What does curve 2 show about the effect of bearing 
friction? Explain. 
    3. Does buoyancy affect this experiment in any way? 
Explain. 
    4. What percentage error would be introduced into the 
results by neglecting the end effect? 
    5. Show that when a and b are very large in comparison 
with their difference, Eq. (7) reduces to Eq. (1). 


