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THIN LENS – GEOMETRICAL OPTICS 
 

OBJECT: To study the geometrical optics of thin lenses by 
the use of a simple optical bench; in particular, to study the 
formation of images produced by the lenses and to measure 
the focal lengths of convergent and divergent lenses. 
 
METHOD: A thin convex lens (also called a positive, or 
converging, lens) is mounted on a simple optical bench and 
used to form an image of a distant object at the principal 
focus of the lens. The lens then is used to form an image on 
a screen of a nearby object. The focal length of the lens is 
calculated from the observed object and image distances, by 
the use of the thin-lens equation. The magnification 
produced by the lens is measured from the ratio of the image 
to object size and compared with the value calculated from 
the ratio of the image distance to the object distance. The 
focal length of a concave lens (also called a diverging, or 
negative, lens) is measured by   using the lens in conjunction 
with a convex lens. 
 
THEORY: As shown in Fig 1 the rays of light (solid lines) 
from a point source diverge radially. The wave fronts are 
therefore spherical (dashed lines) and are perpendicular to 
the rays. When the rays pass through a convex (converging, 
or positive,) lens the change in the speed of the light causes 
the rays to be bent, or refracted. Thus the curvature of the 
wave front is changed. If this change is sufficiently great the 
rays will be brought to a focus and a real image will be 
formed. 

 
 
Rays from a very distant source ("infinite" distance) reach a 
lens as parallel rays. They are brought to a focus, called the 
Principal focus F, Fig 2 (a). The distance from the center of 
the lens to F is called the focal length f of the lens. For a 
diverging (negative) lens, rays entering the lens parallel to 
the principal axis diverge as they leave the lens in such 
directions that they appear to come from a point behind the 

lens. This point is the virtual principal focus, Fig 2 (b). For a 
real source near a lens the rays are divergent as they leave 
the source. 

 
 
From a simple geometrical construction it is possible to 
determine the position and size of an image formed by a thin 
lens. This is done by drawing two rays whose complete 
paths we know, starting from an object point and focusing at 
the corresponding image point. In Fig 3 (a) one ray is shown 
leaving the tip of the arrow object OO' and directed parallel 
to the principal axis. After refraction by the lens this ray 
passes through F. Another ray also from the tip of the arrow 
is drawn through the optical center of the lens. For a thin 
lens this ray is undeviated. The intersection of the two rays 
at I locates the image point which corresponds to the object 
point O. The other image points corresponding to additional 
object points may be located by similar constructions, thus 
giving the complete image II’. 
The location of the image for an object placed closer to a 
converging lens than the principal focus is shown in Fig 3 
(b). Under this condition the positive lens cannot sufficiently 
change the curvature of the wave front to cause 
convergence that will bring the rays to a real focus. It is seen 
that the rays from a particular point on the object diverge 
after passing through the lens. If the refracted rays are 
traced backward, they intersect at a virtual focus. The entire 
virtual image is represented conventionally by the dashed 
arrow. Such a virtual image cannot be formed on a screen, 



Magnification. It will be seen from all of the ray diagrams of 
Fig 3 that the angle subtended at the lens by the image is 
always equal to the angle subtended by the object. Hence 
from the graphical construction we can write the following 
proportion: 

but it may be viewed by looking into the lens, from the right 
in the figure. 
The image of an object formed by a diverging (negative) lens 
is found by a similar construction, as in Fig 3 (c). Here the 
ray that is parallel to the principal axis diverges from the 
virtual focus F after passing through the lens. The image is 
seen to be virtual in this case. 

                   Size of image = distance of image from lens 
                   Size of object    distance of object from lens 
  
The first ratio is called the linear magnification M, or simply 
the magnification. Hence in symbols 

 

                                            

                                     M =
v
u

                                          (2) 

 
where u is the distance of the object from the center of the 
lens and v is the distance of the image from the center of the 
lens. 
 
Equivalent Focal Length of Two Thin Lenses in Contact. 
This equivalent focal length may be found experimentally by 
considering the lens combination as a single lens and 
proceeding as previously described. If the individual focal 
lengths are known, the equivalent focal length f may be 
calculated from the equation 
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where f1 and f2 are the individual focal lengths. Proper regard 
must be observed for the algebraic signs of these focal 
lengths. 
 
Focal Length of a Concave Lens. Since a divergent lens 
makes the rays more divergent, it cannot form a real image 
of a real object, and therefore the focal length of a divergent 
lens cannot be determined by the methods just described for 
convex lenses. The focal length of a divergent lens may, 
however, be obtained by placing it in contact with a 
convergent lens of shorter and known focal length, 
measuring the focal length of the combination, and using Eq. 
(3) for the equivalent focal length of thin lenses in contact. 

 
The Thin-Lens Equation. It is possible to find the location 
and size of an image by algebraic means as well as by the 
graphical method already outlined. Analysis shows that the 
focal length f of a thin lens, the distance u of the object from 
the lens, and the distance v of the image are related by the 
equation             

 
APPARATUS: Simple optical bench and accessories, Fig 4, 
including: object box with illuminated object, Fig 5; lens 
holders; image screen; convex lenses, 5cm, 10cm, and 
15cm focal lengths; concave lens, 15cm focal length; vernier 
caliper; source of parallel light rays; ruler; compass. (A more 
sophisticated form of optical bench is shown in Fig 6. 
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Fig. 4. Simple optical bench. 

This relation holds for any case of image formation by either 
a converging or diverging lens, provided that the following 
conventions are observed: 
    1. Consider f positive for a converging lens and negative 
for a diverging lens. 
    2. Object and image distances are taken as positive for 
real objects and real images, and negative for virtual objects 
and virtual images. The normal arrangement is taken to be 
object, lens, and image, going from left to right in the 
diagram. If v is negative, it means that the image is located 
at the left of the lens, and therefore the image is a virtual 
image. 
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Instead of the object box illustrated the filament of an 
unfrosted and shielded lamp bulb can be used as an object.) 
This experiment should be performed in a room with 
subdued light. 

 
 

 
 
PROCEDURE: I. Focal Length of Converging Lenses.  
    1. Use of distant landscape as a source. Select the 
thinnest convex lens available (focal length about 15cm). 
Mount it in the lens holder on the optical bench and place it 
near the screen. Point the optical bench through an open 
window toward a distant building. Place the screen at the 
zero of the scale on the bench and adjust the position of the 
lens until the central part of the image of the building is 
sharply outlined on the screen. Record the distance from the 
lens to the screen. Show why this distance is the focal length 
of the lens. 
    2. (Optional) Use of parallel-ray illuminator as a source. 
Arrange a projector at one end of the laboratory to give 
approximately parallel rays directed toward the screen of the 
optical bench. Place the lens on the bench and adjust it to 
focus the beam of light sharply. Record the distance from the 
lens to the screen and show why this distance is the focal 
length of the lens. 
    3. Use of thin-lens equation. Place the illuminated object 
at the zero position on the optical bench and arrange the 
screen at a distance of about five times the focal length from 
the object. Mount the lens near the object and find two 
positions of the screen for which the image is sharply 
defined. Choose a position of the lens which will give a 
sharply outlined image of moderate size (covering about half 

the screen). In determining the final position of the screen 
move it from left to right and then from right to left and 
average the two readings for the final value. Measure u and 
v and calculate f from Eq. (1). Draw a ray diagram to scale 
for this case. Draw the diagram to as large a scale as 
possible. 
Repeat the procedure for the measurement of the focal 
length of one or two other convex lenses. 
 
II. Magnification. 4. Using one of the arrangements of Step 
3, for which the image is reasonably large, measure with a 
vernier caliper the sizes of the image and object. Note the 
percentage difference between this magnification II'/OO' and 
the value obtained from v/u. Fig. 5. Object box for optical bench. 
 
III. Focal Length of Thin Lenses in Contact. 5. Insert the 
two thinner convex lenses in a contact in a single-holder and 
measure their equivalent focal length f as in Step 3. Note the 
percentage difference between this observed value of f and 
that obtained from the measured values of the focal lengths 
f1 and f2 by the use of Eq. (3). 
    6. Determine the focal length of the concave lens by 
mounting it in contact with the 5cm convex lens and 
proceeding as in Step 5. 
 
QUESTIONS: 1. Make a rough sketch of the optical features 
of the human eye and show how this device illustrates many 
of the principles of geometrical optics studied in this 
experiment. 
    2. By the aid of a ray diagram explain the operation of a 
simple magnifier. 
    3. Draw a graph to show the variation of 1/u with 1/v for a 
converging lens what is the significance of the horizontal and 
vertical intercepts of this curve? 
    4. Illustrate by diagrams the effect produced on the 
curvature of a plane wave by (a) a plane mirror, (b) a convex 
lens, (c) a concave lens. 

Fig. 6. Lathe bed form of optical bench. 

    5. Explain why the column of mercury in a clinical 
thermometer looks so much larger than it really is. 
    6. Under what circumstances does a convex lens form (a) 
real images, (b) virtual images? Repeat for a concave lens. 
    7. In this experiment the focal length of a convex lens was 
obtained by sighting the lens on a distant object and locating 
the position of the image. If a lens of 16.5cm focal length 
were used and the "distant" object was 450cm from the lens 
what percentage error was made by assuming that the 
object is infinitely distant? 
    8. Look up in your textbook the equation that gives the 
focal length of a lens in terms of the index of refraction of the 
glass and the radii of curvature of the lens surfaces. If the 
index of refraction of a convex lens is 1.50 and the radii of 
curvature are equal, how does the focal length compare with 
the radius of curvature? 
    9. Under what circumstances are images formed by a 
convex lens inverted? erect? larger than the object? smaller 
than the object? 
    10. Show how Eq. (3) follows from Eq. (1). (Use 
subscripts 1 and 2 for the first and second lenses in contact.) 


