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REFRACTION AT A SINGLE SPHERICAL SURFACE 
 

OBJECT: To study the phenomenon of refraction at a single 
spherical surface. 

at a single spherical surface, the following notation will be 
used: 
  

METHOD: The phenomenon of refraction at a single 
spherical surface is studied with the aid of a refraction trough 
filled with water. The radius of curvature of the spherical 
window at one end of the trough is measured. As the window 
is thin and of uniform thickness, its refractive effect may be 
neglected. The spherical refracting water surface will form a 
real image in water of an object in air at some distance from 
the surface. And, likewise, if the object is placed in the 
trough, the refracting surface will produce a real image in air. 
The distances of these objects and images from the 
refracting surface are measured. From these pairs of 
distances and the radius of curvature, the relation between 
these quantities and the focal lengths of the single refracting 
surface can be verified. 

    uA = conjugate distance measured in air 
    uW = conjugate distance measured in water 
    nA = absolute refractive index of air 
    nW = absolute refractive index of water 
     r   = radius of curvature of the refracting surface 
 
All these quantities, and others, must be measured from 
some origin; but in general there is no one origin which is 
suitable for the measurement of them all. Moreover, if these 
quantities are to be employed in describing algebraically the 
nature and position of the image, care must be taken in 
specifying not only the origins but also the directions in 
which they are to be measured. For the sake of consistency 
and convenience, it is customary to adopt a set of 
conventions in the choice of origins and signs. Since the 
convenience afforded by anyone convention varies with the 
nature of the problem to which it is applied, numerous 
conventions are employed. For the problem at hand, the 
following set of conventions will be used.  

 
THEORY: The axis of a spherical refracting surface with 
respect to a point M is the straight line joining M with the 
 

 

Distances measured in the direction of propagation of the 
light are considered as positive and those measured 
opposite to the direction in which the light is traveling are 
called negative. In this treatment the light is assumed to 
travel from left to right. 
The vertex A of the refracting surface is selected as the point 
of reference for measurement of the radius of curvature and 
the conjugate (object and image) distances. Focal lengths 
are measured, however, from the respective focal points. 
These latter quantities are defined later. 

 
center of curvature C (Fig. 1). The point A where this line 
cuts the refracting surface is called the vertex of the surface. 
The absolute refractive index ns of a substance is defined as 
the ratio of the speed v with which light travels in a vacuum 
to the speed vs with which it travels in the substance,  

The Sagittal Formula: The curvature of a wave front or a 
surface at any point is equal to the reciprocal of the radius of 
curvature at that point. It can be shown that the curvature is 
proportional to a quantity which is called the sagitta of arc. 
This quantity can be defined by reference to Fig. 2, in which 
O is the center for a circle of radius r. A half chord y is 
dropped to the diameter AC from a point B near A, cutting off 
a small segment x. Since the triangles ABD and BCD are 
similar, 

                                            
                                   ns = v vs                                         (1) 
 
The relative refractive index of two substances, 1 and 2, is 
defined as the ratio of the light speeds v1 and v2 on the two 
sides of the boundary, 
                                      n12 = v1 v2                                  (2) 
 

           x y = y 2r − x( )     or     2rx − x2 = y2           (3) Two points M and M' so situated that an object placed at one 
point M has an image formed by the spherical refracting 
surface at the other point M' are called conjugate points. The 
respective distances of conjugate points from the vertex of 
the spherical refracting surface are called conjugate 
distances. 

 
If x is small compared with the radius of the curve, x2 may be 
neglected in comparison with 2rx and 
                                   
                            x = y2 2( )1 r( )                                   (4)  

Convention of Signs: In deriving the equation for refraction  



 
 
Hence, for any given half chord y, the curvature is 
proportional to the sagitta of arc x, provided x is small. 
 
Equation of Refraction: It can be shown either 
experimentally or theoretically from the fundamental laws of 
geometrical optics that images can be formed only under 
certain highly restrictive conditions. Although the nature of 
the conditions cannot be discussed here, it is well to note 
that they are too stringent to be completely satisfied in 
practical applications of optical principles. This means that 
the laws of image formation which can be simply derived are 
likely to be conclusions drawn from a number of 
approximations. For many practical purposes, the simple 
approximations are entirely sufficient; but this characteristic 
of geometrical optics should be observed in derivations such 
as the following. 
Let M in Fig. 3 be a point source from which spherical waves 
are sent out traveling with a speed VA. The arc ZAZ' 
represents a section of the refracting surface. Its radius of 
curvature is r, and its center of curvature is C. At the instant 
the wave from M strikes the surface at A, a section of the 
wave front is represented by the arc DAE. The radius of 
curvature of this wave is uA. Since the speed vW of the wave 
 in water is less than the speed vA in air, the center of the 
wave at A is the first to suffer retardation. 
The rays drawn in Fig. 3 emanate from a point source and 
converge to a point image. For an object and image of finite 

size a series of such diagrams are required to describe 
completely conjugate focal relations. Furthermore, in the 
analysis to follow, if the aperture 2GA is small so that the ray 
MG is nearly parallel to the axis MM', a simple mathematical 
relation results which may be used in the study of image 
formation. Under this assumption, it can be seen from Fig. 3 
that DG is approximately equal to DB, and by the time the 
wave front DAE has entirely passed the boundary between 
the air and the water, its curvature is approximately shown 
by the curvature BJ. This new wave front has a radius of 
curvature uW and converges toward the center of curvature 
or image point M'. 
From D draw a perpendicular to the axis intersecting it at the 
point H. Draw also a parallel to the axis through D cutting the 
surface ZZ' in B. As the edge ray MG gets nearer the axis, 
the distance DG becomes more nearly equal to DB and the 
conclusions drawn hold only when this difference may be 
neglected. Drop a perpendicular to the axis from B and 
represent the half chord BK by h.  
Since the elements in a wave front are all in the same 
phase, the time required for the edge of the wave to go from 
D to B must be the same as the time required for the center 
of the wave to go from A to J. This time may be expressed 
as follows: 
            
  DB vA = AJ vW         or      nA ⋅ DB = nW ⋅ AJ         (5) 
 
From Fig. 3, 
   
 DB = HK = HA + AK    and   AJ = AK − JK        (6) 
 
Substituting in Eq. (3), 
                            
              nA HA + AK( ) = nW AK − JK( )                     (7) 
 
The quantities in the parentheses of Eq. (7) are respectively 
the sagittas of the several arcs shown in Fig. 3. Thus Eq. (4) 
may be applied in. order to each term of Eq. (7). Of these, 
HA is negative since AM = uA is measured in a direction 
contrary to that in which the light is propagated. That is, 
                                  
                        HA = − h2 2( )1 uA( )                              (8) 
 
The other terms, however, are positive. For example, 
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                          AK = h2 2( )1 r( )                                 (9) 
 
Hence Eq. (7) becomes 
       
−nAh

2 2uA + nAh2 2r = nW h2 2r − nW h2 2uW    (10) 
 
Canceling h2/2 in each term, there results 
 
               nW uW − nA uA = nW − nA( r)                   (11) 
 
the equation for refraction at a single spherical surface. This 
equation is interesting in several respects, and important 
because of the use which can be made of it. It was derived 
by considering two rays, one of which coincided with the 
optic axis. If a greater number of rays had been discussed, it 
would have been discovered that all these rays originating 
from the same point source would not unite at a single image 
point. However, if the rays considered are close to the axis, 
they form an image point to a very close approximation. The 
nature of the approximation can be expressed 
mathematically by considering φ , the angle between a given 
ray and the axis. The sine of this angle can be expressed in 
the form of a power series as        

                       sinφ = φ −
φ3

3!
+

φ5

5!
−

φ7

7!
+ ....            (12) 

 
The mathematical physicist Gauss showed that the 
approximation introduced by treating optical problems in the 
manner employed for the derivation of Eq. (11) consists in 
neglecting all terms of the series expansion except the first. 
The method of geometrical optics in which this 
approximation is applied is called the Gauss first order 
theory. A more elaborate method is called the third order 
theory. Rays sufficiently close to the optic axis to make it 
justifiable to write sinφ =φ  are called paraxial rays. For 
practical purposes, the first order theory is suitable for 
locating the image formed by any system of surfaces, 
however complex the system may be, provided that the 
surfaces are spherical and have their centers of curvature 
upon a straight line. This means that Eq. (11) is one of the 
most important relations in geometrical optics. By using it 
twice, it is comparatively easy to derive the formulas for thin 
lenses. Similarly, formulas for systems of lenses may be 
found. A plane surface is treated as a spherical surface for 
which r is infinitely large. Equation (11) may be applied to 
reflecting surfaces also by introducing the concept of a 
negative index of refraction. Since the refractive index of a 

its velocity in the substance, it is apparent that negative 
values of refractive index indicate nothing more than such a 
change in direction of the velocity as occurs upon reflection. 
 

substance is the ratio of the velocity of light in a vacuum to 

oci and Focal Lengths: Of the infinite number of pairs of 

ocal 

F
conjugate points on the axis satisfying the relations of Eq. 
(11), two have special significance. The axial point on the 
side of the incident light whose conjugate point is at infinity is 
called the anterior or first principal focal point F. The axial 
point which is conjugate to a point at infinity on the side of 
the incident light is called the posterior or second principal 
focal point F'. The focal lengths are the respective distances 
of these points from the vertex of the refracting surface. 
By applying these definitions to Eq. (11), the anterior f
length f and the posterior focal length f' may be obtained. 
Thus, if uA' is the distance conjugate to uW = ∞ , it follows 
that 

                                  f = −uA
′                                        (13) 

ikewise, if uW' is the distance conjugate to 
 

uA = −∞
′

L , 

                                                                      (14) 

hus, when 

 ′ f = −uW
 
T uW = ∞ , Eq. (11) yields 

                      
 
  nA f = nW − nA( ) r                             (15) 

nd when
 
a  uA = −∞ , it follows that 

            
       
          −nW ′ f = nW − nA( ) r                          (16) 

rom these last two relations, it appears that 
 
F
                                
                         − ′ f f = nW nA = nAW                        (17) 

he ratio of the second focal length to the first is thus equal 

adius of Curvature: The radius of curvature of the 

e average distance between the points of the 

 
T
to the relative refractive index of the two media. 
 
R
spherical refracting surface is to be determined by using a 
spherometer. 
If S denotes th
spherometer legs and a the difference in reading of the 
spherometer when all four points touch a plane surface, and 
when these points touch the spherical surface, then the 
radius of curvature r of the spherical surface is given by the 
equation                       

Fig. 4. Refraction Trough with accessories. 
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                            r = S2 6a + a 2                                (18) 

PPARATUS: The refraction trough to be used in th1s 

efraction trough on 

ROCEDURE: 
et the spherometer on a plane glass plate 

per on the glass plate and press 

bject in Air, Image in Water: Place apiece of wire gauze 

bject in Water, Image in Air: Remove the white image 

be formed in a small circle of high intensity. 

e distance 

he radius of curvature r of 
e spherical refracting surface by using Eq. (18). Note that 

ume nA = 1 for air. Determine the 

 image of an object in air 60cm 
way from a single refracting surface, radius of curvature 

e location of the 

e focal lengths f 

 Eq. (11) which is applicable to each surface of a 
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A
experiment (Fig. 4) consists of along glass trough w1th a thin 
spherical window of uniform thickness set in one end. When 
the trough is filled with water, the surface of the liquid next to 
the window will be convex outwards. As the window is very 
thin, its refraction may be neglected. Light entering the 
trough from the outside through the window may be 
considered as being refracted at a single spherical surface 
whose refractive index is that of water. 
The following apparatus is needed: R
base; large beaker for filling the trough; object holder with 40 
watt lamp on base; access to 110-volt circuit; wire gauze 
1½” x 2”; white screen; black screen; hooded image screen; 
meter stick; spherometer and plate glass; steel rule. 
 
P
Experimental: S
and adjust the micrometer screw until all four legs touch the 
plane simultaneously. Read the scale and wheel setting. 
Repeat the measurement at least twice. Next, set the 
spherometer on the convex surface at the end of the trough 
and adjust the screw until all four legs again make contact. 
Then read the scale and wheel. Repeat as before. The 
difference between the average readings in the two cases is 
the distance a in Eq. (18). 
Place a piece of smooth pa
the points of the spherometer legs against this paper so that 
these points leave fine punctures in the paper. Use a good 
steel rule to measure the distance S between each pair of 
punctures. Take three independent sets of readings using 
anew set of punctures for each. 
 
O
in an object holder and mount it on a stand at the same 
height as the center of the spherical surface in the refraction 
trough and in line with the length axis of the trough. With an 
electric lamp illuminate the wire gauze. Fill the refraction 
tank with water. Place a white screen in the carrier of the 
trough and, moving it slowly away from the spherical 
surface, locate the image of the wire gauze which will be 
formed in the water. Measure the distance uA from the object 
to the spherical surface, and the image distance uW from the 
apex of the spherical surface to the white screen. Make 
three sets of readings for uA and uW. For example, make uA 
= 100, 85 and 70cm and determine the corresponding value 
of uW. 
 
O
screen from the carrier and put in its place the wire gauze to 
serve as an object screen in the liquid. Illuminate this screen 
by means of the electric lamp directly back of the wire 
gauze. Make the distance of the object screen from the 
spherical end of the trough large enough so that a real 
image will be formed in the air. Locate this image accurately, 
by using the ground glass screen. Make three sets of 
readings. For example, make uW = 70, 60 and 50cm and 
locate the three corresponding images. Note that a shadow 
of the wire gauze object will be formed. This must not be 
confused with the image of the wire gauze. The image will 

Measure carefully for each setting the distance uW from the 
object to the apex of the spherical surface and th
uA from the image to the spherical surface in the air. Make a 
fourth setting of uA and uW by placing the object screen at 
one of the end positions occupied by the image when the 
object was in air. Locate the image in air and record the 
values of uA and uW. Test the conjugate distances by 
comparing the two sets of values. 
 
Interpretation of Data: Calculate t
th
when the object is in air, uA is negative but uW and r are 
positive. However, when the object is in water, uA is positive 
but uW and r are negative. 
From each set of values of uA, uW and r calculate the index 
of refraction for water. Ass
principal focal distances f and f' by using the average values 
of nW in Eqs. (15) and (16). 
 
QUESTIONS: 1. Locate the
a
10cm and relative refractive index n = 1.5. 
    2. If a single refracting surface separating air and water 
has a radius of curvature of 8cm, find th
object in air such that the image in water will be real and 
equally distant from the refracting surface. 
    3. Given relative refractive index n = 1.52 for a single 
refracting surface and r = 6cm, calculate th
and f'. 
    4. Take the index of refraction of air as 1. (a) Write the 
form of
simple lens, being careful to apply the convention of signs 
correctly. (b) Show that adding these two equations yields 
the lens formula 

    
1 1 1 1  

uA

−
uA

′ = n −1( )
r1

−
r2 

 
 
  

 
where r1 and r2 are the radii of curvature of the two surfaces 
f the lens, n is the refractive index of the lens, uA is the o

distance of the object from the first surface of the lens and 
uA' is the distance of the image from the second surface. 


