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NEWTON’S SECOND LAW OF MOTION: ATWOOD’S MACHINE 
 

OBJECT: To study the relationship between force and 
acceleration in a simple dynamical system. 
 
METHOD: An adaptation of Atwood's machine consists of a 
strip of paper tape passing over an aluminum pulley and 
carrying known masses at its ends. The acceleration 
produced when the masses are unequal is measured by 
means of an electrical recording system. A series of 
observations is made, the difference between the masses 
being varied while their sum is kept constant. A curve is 
plotted showing the relationship between acceleration and 
accelerating force. 
 
THEORY: Sir Isaac Newton's second law of motion is one of 
three fundamental postulates advanced by the eminent 
scientist in his monumental Principia (1686). These three 
postulates form the basis of the present system of 
mechanics. They may be stated as follows: 
    I. By virtue of the inherent and universal property of matter 
called inertia, every body tends to maintain its existing state 
of rest or uniform velocity unless acted on by some external 
force. 
    II. The acceleration experienced by a body is directly 
proportional to the force acting upon it, inversely proportional 
to the mass of the body, and takes place in the direction of 
the applied force. 
    III. The force (action) exerted by one body upon another is 
always accompanied by an equal and opposite force 
(reaction) exerted by the second body upon the first one. 
The second of these laws expresses a quantitative 
relationship which is susceptible of experimental verification. 
The mathematical expression of the law is 
 

                                   a = k
F
m

                                         (1) 

 
or                                                                       (2) F = kma
 
where the numerical value of the proportionality constant k 
depends only upon the units used. An "absolute" system of 
units is one based upon the arbitrarily established units of 
mass, distance and time, and in which the force unit is so 
defined as to make k unity. Thus, when absolute units are 
used, Eq. (2) becomes 
                                          F = ma                                       (3) 
 
An absolute unit of force is, therefore, the amount of force 
required to impart unit acceleration to unit mass. In the c.g.s. 
absolute system, a force of one dyne is the force required to 

give to a mass of 1gm an acceleration of 1cm/sec2. In the 
British absolute system, the poundal is the force required to 
give amass of 1lb. an acceleration of 1ft/sec2. 
A gravitational system is one in which the unit of force is 
defined as the pull of gravity on a unit mass at sea level. The 
value of k is then determined experimentally from the 
acceleration experienced by a body moving under the force 
of gravity, i.e., under its own weight. The acceleration g of a 
freely falling body has been found to have an approximate 
value at sea level of 980cm/sec2 or 32.2ft/sec2. Thus, the 
value of k is 1/980 when the c.g.s. gravitational unit of force 
is used, and 1/32.2 when the British gravitational system is 
used. It is readily seen, therefore, that the c.g.s. gravitational 
unit of force (gm-wt) is equal to 980 dynes, and the British 
gravitational unit of force (lb.-wt) is equal to 32.2 poundals. 
A convenient arrangement for demonstrating experimentally 
the relationships expressed by Eq. (3) is the Atwood 
machine illustrated diagrammatically in Fig. 1. Ideally the 
system consists of two masses m1 and m2 attached to the 
ends of a weightless cord that passes over a weightless and 
frictionless pulley. Under these idealized conditions the 
inertia of the system consists of the sum of the two masses 
m1 + m2, and the accelerating force, expressed in 
gravitational units, is numerically equal 
to the difference of the masses m1 - m2, 
or in absolute units (m1 - m2) g. By 
Newton's second law the acceleration is 
then 

               a =
m1 − m2( )g
m1 + m2

               (4) 

 
Practically, of course, this ideal situation 
cannot be realized. It can be 
approximated roughly by reducing 
friction to a minimum and by making the 
masses of the cord and the pulley very 
small in comparison with the suspended 
masses. While the mass of the cord may 
be made almost negligible, the mass of 
the pulley introduces a complication that 
must be considered in this experiment. 
The complication arises from the fact that, whereas Newton's 
second law as stated above applies to linear motion, the 
motion of the pulley is angular. A correction involving the 
rotational inertia of the pulley must, therefore, be made to 
Eq. (4). This can be done by considering the energy 
relationships involved. When the system travels a vertical 
distance sunder the influence of the accelerating force (m1 - 
m2) g, an amount of work (m1 - m2) gs (absolute units) is 



done on the system. As a consequence, the system, initially 
at rest, acquires kinetic energy equal to 
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of the masses, ω  the angular velocity of the pulley, and I 
the rotational inertia of the pulley. The two terms in this 
expression for kinetic energy represent, respectively, the 
translational and the rotational energy. Neglecting friction, 
the energy equation may then be written 

Clearly, the effect of friction is to 
diminish the force effective in 
producing acceleration. 
Comparison of Eqs. (9) and (10) 
shows the percentage error in 
the acceleration due to friction to 
be 

 
            ( )m1 − m2 gs = 1

2 m1 + m2( )v2 + 1
2 Iω 2       (5) 

 
The relationship between the angular velocity ω  of the 
pulley and the linear velocity of its rim, which is also the 
linear velocity v of the tape and suspended masses, 
isω = v r , where r is the radius of the pulley. Substitution 
of this relationship in Eq. (5) yields 
 
             ( )m1 − m2 gs = 1

2 m1 + m2 + I r2( )v2           (6) 

 
from which 

              ( )m1 − m2 g = m1 + m2 + mo( v2

2s
)                 (7) 

 
where mo = I r 2 is a correction to the inertia of the system 
which may be called the "equivalent mass" of the pulley. 
Substituting a = v2 2s and solving for a, 
 

                           a =
m1 − m2( )g

m1 + m2 + mo

                               (8) 

 
Compensation for Friction: Eq. (8) was derived upon the 
assumption that the system is frictionless. In actual practice, 
however, it is necessary to take the negative force of friction 
into account. This may be done by adding to m1 a 
compensating mass x just sufficient to equalize friction. 
Since the weight of the mass x is used in overcoming 
friction, x does not enter the expression for the accelerating 
force, but the inertia of the sys-tem is increased by the 
amount x. The expression for the acceleration thus becomes 
 

                      a =
m1 − m2( )g

m1 + m2 + mo + x
                             (9) 

 
Upon casual inspection of Eq. (9) it would appear that the 
friction correction only affects the total mass of the system, 
but it must be remembered that this expression does not 
refer to the same system as does Eq. (8) but to that system 
with m1 increased by an amount x. If the latter system were 
frictionless, its acceleration would be 
 

                      a ′ =
m1 − m2 + x( )g

m1 + m2 + mo + x
                         (10) 

                     
′ a − a

′ a 
=

x
m1 − m2 + x

   (11) 

 
APPARATUS: The type of 
Atwood machine employed in 
this experiment is illustrated in 
Fig. 2. A wide aluminum pulley P 
of known rotational inertia is 
mounted in cone bearings on a 
cast iron bracket J attached to 
the wall by means of screws. A 
strip of paraffin-coated paper 
tape T passes over the pulley 
and supports the masses A and 
B which are attached to the tape 
by means of special clips Q1 and 
Q2 to which weight hangers are 
permanently attached. The 
weight hanger attached to Q1 
has a compartment for lead shot 
used in making the correction for 
friction. The mass of Q1 and its 
weight hanger is equal to that of 
Q2 and its hanger, thereby 
making it convenient to 
counterpoise the system. One of 
the clips Q1 is provided with a 
cradle for carrying the 
accelerating weights which are 
made in the form of cylindrical 
metal riders provided in 
magnitude S of 10, 20, 30 and 
40 grams. The bracket J 
supports a column N provided 
with a leveling screw S. Upon 
the column slides a receiving 
hook H for picking off the rider 
as it passes. The position of the 
hook can be adjusted along the 
column, and it can be turned out 
of the way when desired. 
Attached to the bracket are 
spring buffers G which engage a 

bumper arm on the clip Q2 and 
reduce the shock of impact. A 
friction brake (not shown in the 

illustration) can be released by pulling a cord D. An insulated 
spark terminal K may be clamped at various positions along 
the pulley. 

Fig. 2. Atwood’s Machine, 
electrical recording type 

As the system moves under the influence of the pull of 
gravity, the tape passes over the pulley and is punctured 
periodically by a series of sparks that are caused to pass at 
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regular intervals between the pulley P and the spark terminal 
K. The sparks melt the paraffin coating, leaving a sequence 
of dots to mark the passage of the system. The distance 
between successive dots, therefore, indicates the distance 
through which the system moves in the corresponding 
interval of time. The sparks are generated by a spark coil, 
one of the secondary terminals being connected to the spark 
terminal K, the other being grounded. 

inspected by the instructor before closing the switch. 
Adjust the frequency of the timer so as to give approximately 
6 sparks per second, and determine the exact value of the 
time interval by observing the number of impulses registered 
in 1 minute. Make three observations and take the average 
value. Place the spark terminal K near the edge of the tape 
so that several records may be taken on one strip. 
Determine the (equal) masses of the clips Q1 and Q2 with 
their attached weight hangers (unless this value is stamped 
on them). Call this mass k. 

The spark control system, represented diagrammatically in 
Fig. 3, contains two specially designed units: the spark timer 

Make a loop of tape (2in width) such as that illustrated in Fig. 
2 and attach the clips Q1 and Q2 as shown. The uncoated 
side of the paper should be next to the pulley. Set the 
receiving hook H near the lower end of the column. By 
means of slotted weights add a mass of 170gm to each 
weight hanger. 

 

 

 Fig. 4. Spark Timer 
 
Determine the frictional correction by adding shot to the 
hanger attached to Q1 until the system moves with constant 
velocity when given a start. Remove Q1, weigh it carefully, 
and record the value of x. Do not remove the shot from the 
hanger. 

 
(Fig. 4) which regulates the spark frequency, and the 
impulse counter (Fig. 5) which indicates the number of 
sparks occurring in a given time. The spark timer is an 
electrically driven vibrating bar V, the frequency of which can 
be varied by altering the amount and position of the loading 
weight W. Large changes in frequency can be made by 
interchanging vibrator bars. The vibration is maintained by 
an electromagnet M, the current to which is interrupted 
periodically by means of a pair of contacts C1. The vibration 
of the bar operates a second and independent set of 
contacts C2 which makes and breaks the current in the 
primary of the induction coil. The impulse counter is 
essentially a magnetic escapement by means of which a 
sweep hand is caused to move one division of a dial at every 
magnetic impulse. The mechanism is set in operation by 
depressing a button which closes the circuit to the counting 
magnet. The button may be locked down by rotating it 
slightly. The spark interval is determined by observing the 
number of impulses registered in a given time on a dial. 

Set the system in its starting position and place the 10gm 
rider in the cradle. The accelerating force is now 10gm and 
the total suspended mass m1 + m2 is 2 (170 + k) + x + 10. 
The value of m1 + m2 is to be maintained constant 
throughout the experiment. 
Start the sparks and release the brake. Apply the brake 
again just before the bumper bar on Q2 strikes the buffer G. 
As soon as the fall is completed, shut off the sparks. Move 
the spark terminal K about a centimeter and prepare for a 
second fall. Replace the 10gm rider with the 20gm one and 
remove 5gm from each side, thereby keeping the sum m1 + 
m2 constant. Make a record as before. In this way make a 
total of four records on one tape following the schedule 
shown in Table I. Check the sum m1 + m2 before each run. 
Before removing the tape, adjust it as it was at the instant 
the rider was caught by the receiving hook H and make a 
mark across the tape at the spark terminal. On the part of 
the record below this mark, the dots show gradually 
increasing spacing and form a record from which the 
acceleration can be determined. Above the mark the dots 
are equally spaced, indicating the terminal velocity of the 
system. 

Additional apparatus consists of a 6-volt battery, an induction 
coil, a 20ohm rheostat, a switch, a stopwatch, a meter stick, 
a vernier caliper, a platform balance and a set of weights. 
Required weights consist of two of each of the following: 5, 
10, 20, 50 and 100gm. 

Using the vernier caliper, measure and record the diameter 
of the pulley; also record the value of the rotational inertia I 
which is stamped on it. 

 
PROCEDURE: 
Experimental: Connect the electric circuit as shown in Fig. 
3, grounding the bracket, the spark timer and one of the 
secondary terminals of the induction coil. The vibrator on the 
spark coil must be screwed down tightly. Have the circuit 

 
Analysis of Data: 
Required Analysis: Remove the tape and stretch it on the 
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table. A typical record is illustrated diagrammatically in Fig. 6 
which represents two traces. 
 

 
 

 
The distance s measured from the initial dot to the pick-off 
mark is the distance over which the accelerating force has 
acted on the system. The distance between the uniformly 
spaced dots in the upper half of the 
 

 
 

record is a measure of the final velocity vf acquired over the 
distance s. The distance between any two successive dots 
divided by the time interval between sparks gives the 
average velocity over the particular interval concerned. If the 
spark interval is taken as an arbitrary unit of time, the 
velocity in centimeters per interval is equal numerically to the 
distance in centimeters between the successive dots. The 
accelerations are to be determined from two such 
measurements of velocity, one (v1) near the beginning of 
each record and another (v2) near the end of the accelerated 
part of each record, just before the pick-off. Using a vernier 
caliper, determine the extreme values of v1 and v2 for all the 
records. Be sure that the measurement of v2 does not extend 
beyond the pick-off mark. Enter these values in columns 2 
and 3 of Table II. In each case count the number of time 
intervals during which the velocity increased from v1 to v2, 
remembering that the average velocity is the actual velocity 
at the middle of the time interval. Enter these values of the 
time in column 4. Dividing the difference between 
corresponding terms of columns 2 and 3 by the number of 
time intervals from column 4 gives the acceleration in 
centimeters per interval per interval. Enter these 
experimentally determined values of acceleration in column 
5. Express the experimentally determined values of the 
acceleration in cm/sec2 and record in column 6. Taking into 

account the equivalent mass 
mo of the pulley, compute the 
values of a predicted by Eq. 
(9) and enter in column 7. 
Plot a curve of the

ntage 

ptional Analyses: 1. From 

 and, 

 

 
experimentally determined 
acceleration versus the 
accelerating force (column 6 
vs. column 1). Determine the 
inertia of the system from the 
slope of the acceleration-
force curve and compare 
with the known value. 
Compute the perce
effect of friction, using Eq. 
(II). 
 

Fig. 5. Impulse Counter 

O
the data of one fall, compute 
the linear kinetic energy 
acquired by the masses m1 
and m2. In making this 
computation the final linear 
velocity of the system is 
obtained from the uniform 
distances in the portion of 
the record after the pick-off. 
Using as many of these 
intervals as possible, 
compute the average value 
of vf Also compute the 
angular kinetic energy of the 
pulley from its known 
rotational inertia (stamped on 
it) and from its angular 
velocity determined from vf 
and the radius of the pulley. 
Compare the total kinetic 
energy acquired by the 
system with the work done 
by the force of gravity. 
    2. Select any record
from the final velocity vf and 
the corresponding distance s 
over which the system was 
accelerated, compute the 
acceleration, using the 
appropriate equation of 
uniformly accelerated 
motion. Compare with the 
value obtained from Eq. (9). 
    3. Starting with the initial
dot of one record, label the 
dots 0, 1, 2, 3, etc. Measure 
the distances s1, s2, s3, etc. 
of the successive dots from 
the one marked 0. In each 
case count the number of 
intervals elapsed. Plot a 
curve of the distance versus 
the square of the time (in 
intervals). From the slope of 
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the curve determine the acceleration. Express the result in 
cm/sec2 and compare with the corresponding value in 
column 6. 
 
QUESTIONS: 1. Is the acceleration-force curve consistent 
with Eq. (2)? Explain. 
    2. Discuss the discrepancy between the experimental and 
computed values of the acceleration. Is it influenced by 
friction? Explain. 
    3. What is the purpose of looping the tape as shown in 
Fig. 2? 
    4. From the last fall, compute the tension in the tape 
before and after the brake was released. 
    5. Discuss the effect of pulley friction upon the tension in 
the tape. 
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