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SIMPLE HARMONIC MOTION 
 

OBJECT: To study simple harmonic motion by measuring 
the force constant and the period of oscillation of a vibrating 
spring. 
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METHOD: A spring is hung vertically and increasing masses 
are attached to the lower end. The corresponding extensions 
of the spring are measured on a scale ruled on a mirror. 
From the data of weight and extension a graph is drawn and 
the best average of the force constant (force per unit 
extension) is obtained. A known mass m of weight mg is 
placed on the lower end of the spring, and the system is set 
into vertical oscillation. The period of the oscillations is 
measured and compared with its theoretical value. 
  
THEORY: Simple harmonic motion is a periodic motion 
experienced by the bob of a swinging pendulum and in the 
oscillations of a mass attached to a spring. It is a to-and-fro, 
or vibrating, motion of objects stretched or bent from their 
normal positions and then released. Such an object moves 
back and forth along a fixed path, repeating over and over a 
fixed series of motions and returning to each position and 
velocity after a definite period of time. This type of motion is 
produced by varying forces and hence the object 
experiences varying accelerations. 

 
 

Fig. 1. Spring with weight mg in equilibrium at O, oscillating between 
limits A and A’. 

Consider the motion of the mass m as it is oscillating 
between the limits A' and A, Fig. 1. At positions A' and A the 
mass is instantaneously at rest and the energy is all 
potential. At A the spring is less stretched than at O and the 
potential energy of the mass m at A is the work done in 
raising the mass from O to A, while at A' the spring is further 
extended and the potential energy at A' is the work done in 
stretching the spring from O to A'. At the equilibrium position 
O the oscillating mass has zero displacement but has its 
maximum velocity (vm), and its maximum kinetic energy 
(1/2mvm

2). As the mass moves from O to A, Fig. 1, it is being 
slowed-down, coming to rest at A, then speeding up in 
moving from A to O. Thus the mass is undergoing an 
acceleration in a downward direction while the displacement 
is in an upward direction. Similarly it can be seen that in the 
downward motion from O to A' the mass has an upward 
acceleration and a downward displacement. In both these 
cases the acceleration is in the opposite direction to the 
displacement. The acceleration, velocity and energy 
changes are summarized in Table I. When the oscillating 
mass has a displacement y, somewhere between O and A, 
the restoring force is –ky, the acceleration is –ky/m, and the 
energy is partly kinetic and partly potential. 

Simple harmonic motion results when the restoring force (F) 
acting on the object is proportional to, and in the opposite 
direction to the displacement (y) of the object. This 
statement may be expressed symbolically as: 
 
                                                                           (1) F = −ky
 
where k is a quantity called force constant of the spring; and 
Eq. (1) is the defining equation for k. The negative sign in 
Eq. (1) implies that the restoring force (F) is in the opposite 
direction to the displacement (y) of the object. In order to 
understand the physical meaning of Eq. (1) consider a spring 
hung vertically with a mass m attached at its lower end, Fig. 
1. This mass m, of weight mg, stretches the spring to the 
equilibrium position O. If the mass is now pulled down from 
O to A' and set free, it will oscillate with a definite period 
between the limits A' and A. The distance OA = OA' is called 
the amplitude of the oscillations and is the maximum 
displacement of the mass. It is assumed in simple harmonic 
motion that the amplitude remains constant, or that the total 
mechanical energy, kinetic plus potential, remains constant. 
This is only approximately correct for systems oscillating in 
the air because energy is dissipated to the air and also in the 
system itself. 

 

 
 

The value of the force constant k, the restoring force per unit However, this dissipation of energy is usually small enough 
to be neglected. 



displacement, may be obtained by adding weights to the 
lower end and measuring the corresponding displacements. 
As long as the added weights do not produce any permanent 
change in the spring, that is, the spring returns to its original 
length when the weights are removed; it is found that the 
displacement is proportional to the added weights. This is a 
statement of Hooke's law, first given by Robert Hooke in 
1676. 
The potential energy of the oscillating mass m in Fig. 1, for 
any displacement y, can be obtained from the, work done in 
producing the displacement y. At the equilibrium position O 
there is no additional force; but for the displacement y the, 
additional force is ky. The additional force is proportional to 
the displacement y so that the average force required to 
extend, the spring through the displacement y is ky/2.Since 
this work is equal to the product of the average force and the 
displacement in the direction of the force, the work done for 
a displacement y is ky2/2. Thus the energy at displacement y 
is given by 

                                  PE =
ky 2

2
                                       (2) 

 
At the positions of maximum displacement OA = OA' = ymax 
the potential energy is ky2

max/2. Since the mass has no 
kinetic energy at these positions, the maximum potential 
energy is ky2

max/2, and by the principle of conservation of 
mechanical energy this is the total energy and is constant. 
Thus the total energy of the oscillating system can be 
expressed as: 

                         Total Energy =
ky2

max

2
                              (3) 

 
At a displacement y between O and A, Fig. 1, the potential 
energy is ky2/2 and the kinetic energy must be equal to the 
difference of the total energy and the potential energy. Thus 
the kinetic energy at displacement y is given by: 
 

                        KE =
ky2

max

2
−
ky 2

2
                               (4) 

 
When the system is set into oscillation the time of one 
complete vibration, called the period T, depends on the total 
mass oscillated and the force constant k. So long as the 
oscillations are not too large it can be shown that the period 
is independent of the amplitude of the oscillations and is 
given by: 

                                T = 2π
m
k

                                     (5) 

 
This equation is derived from the expression for the 
acceleration a at the displacement y which is 
 
                             a = F m = ky m                                (6) 
 
If cgs units are used in the quantities of Eq. (6) m is in 
grams, F is in dynes, and k in dynes/centimeter, then the 
energy will be in ergs. The corresponding quantities in the 
mks system of units are: m in kilograms, F in Newton’s, k in 

Newton’s per meter, and energy in joules. For the British 
Engineering system of units m is in slugs (m = w/g), F in 
pounds weight, k in pounds weight per foot, and energy in 
foot-pounds. 
 
APPARATUS: A spring with mirror and support together with 
a weight holder and slotted weights are required. A timing 
device such as a stopwatch or stopclock is needed for 
determining the period of the oscillations. 
 
PROCEDURE: Experimental: Set up the apparatus as 
shown in Fig. 2. The maximum load which can be placed on 
the weight holder depends on the, spring used, and may be 
supplied by the instructor. Otherwise a load not greater than 
that which causes an extension of about one-third of the 
original length should be used. Suppose this maximum load 
is 50gm exclusive of the weight holder. Record the zero 
reading with the weight holder present. Observe the scale 
readings when the pointer and its image in the mirror 
coincide. Add successive loads of 10gm and find the 
corresponding readings up to the maximum of 50gm. 
Tabulate the values of the load, scale readings and 
extension. Assuming a maximum load of 50gm for the 
spring, place 10gm on the weight holder and set the system 
 

 
 Fig. 2. Spring and weight holder attached to support and scale.
 
 
into oscillation by pulling the weight holder down a few 
centimeters. Measure the time for fifty complete oscillations 
and determine the period. Repeat this measurement at least 
once more. Place 30gm on the weight holder and determine 
the period then repeat this for 50gm. 
 
Calculations: Plot a graph of load versus extension using 
the load as ordinate and extension as abscissa, and draw 
the best straight line through the points. Measure the slope 
of the straight line. By slope is meant the rate of rise of the 
line and is measured by dividing the vertical ordinate (load) 
by the horizontal abscissa (extension). The slope gives the 
force per unit extension and is the value of k used in the 
theory portion. 
Calculate the periods for the three values of the masses 
oscillated using the value of k obtained above and Eq. (5). 
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Note that the mass oscillated is the sum of the masses of the 
weight holder and the added masses. Find the percent 
difference between the measured and calculated values of 
the period T by taking the difference in the two values, 
multiplying this by 100% and dividing by the measured 
period. 
 
QUESTIONS: 1. If in Eq. (5) the mass m is given in grams 
and k in dynes per centimeter show that the units of the 
right-hand side of this equation are seconds. 
    2. In the theory portion it is stated that the restoring force 
is in the opposite direction to the displacement. State what 
the motion would be if the force were in the same direction 
as the displacement. 
    3. Using the value of k found in the experiment, find the 
maximum energy for a maximum displacement ymax of 5cm. 
    4. From the maximum energy of the system obtained in 
question 3, find the potential and kinetic energies when the 
displacement y is 2cm. 
    5. Repeat question 4 for a displacement of 4cm. 
    6. According to the theory how do the period and the 
maximum energy vary with the amplitude of the oscillations? 
    7. Would you expect that a fraction of the mass of the 
spring should be included in the equation for the period, Eq. 
(5)? Give reasons for the answer. 


