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ROTATIONAL INERTIA: ANGULAR MOTION 
 

OBJECT: To study angular motion and the concept of 
rotational inertia; in particular, to determine the effect of a 
constant torque upon a disk free to rotate, to measure the 
resulting angular acceleration, and to determine the 
rotational inertia of the disk. 
 
METHOD: A constant torque is applied to a metal disk which 
is free to rotate. The disk is found to move with uniform 
angular acceleration. This acceleration is measured by a 
spark-recording method in which sparks at regular and 
measurable time intervals make their traces upon a coated 
paper, containing a polar-coordinate scale, fastened to the 
side of the disk. The angular acceleration is determined from 
the slope of the angular velocity-time graph, the velocities 
being calculated from the observed angular distances 
between spark traces and the time between sparks. The 
torque is the product of the measurable force applied to the 
edge of the disk and the radius of the disk. The rotational 
inertia is then determined from the ratio of the torque to the 
angular acceleration. Finally this "observed" value of the 
rotational inertia is compared with the "theoretical" value 
calculated from the geometrical constants and the mass of 
the disk. 
 
THEORY: 
Angular Speed: The angular speed of a body is defined as 
its time rate of change of angular displacement, or the ratio 
of the angular distance which it has traversed to the time 
required to travel that distance. The defining equation for 
average angular speed ω  is 
 
                                   ω = θ t                                           (1) 
 
where θ  is the angular distance traversed and t is the time 
required for the body to travel that distance. Instantaneous 
angular speed ω , is the limit of the above ratio as tile time is 
made vanishingly small. In symbols 
 

                            ω = Lim→0
∆θ
∆t

 
 

 
                                  (2) 

 
where ∆θ  is the small increment of angular distance 
traversed in the corresponding element of time ∆t . The 
absolute units of angle and time in both metric and British 
systems are the radian and second, respectively, and hence 
the absolute unit of angular speed is the radian per second. 
There is a distinction between angular speed and angular 
velocity which is similar to that between linear speed and 

linear velocity. The direction of an angular velocity is 
specified as the direction of its axis of spin; the sense of the 
direction is related to the sense of the rotation as the 
direction of advance of an ordinary right-handed screw is 
related to its direction of rotation. 
 
Angular Acceleration: Whenever a body has its angular 
velocity changed it has an angular acceleration. This is 
defined as the time rate of change of angular velocity, or the 
ratio of the change in angular velocity to the time required to 
produce the change. In symbols, average angular 
acceleration a is defined by the equation 
 

                                a =
ω t − ωo

t
                                    (3) 

 
where ω t, is the final angular velocity, ω o is the initial 
angular velocity and t is the time required to change the 
velocity. The instantaneous value of the angular acceleration 
4 is the limit of this ratio as the time is made vanishingly 
small. Symbolically 

                              a = Lim∆t→0
∆ω
∆t

                              (3a) 

 
where ∆ω  is the change in angular velocity taking place in 
the small increment of time∆t . If a curve of angular velocity 
is plotted against time, as in Fig. 1, a straight line is obtained 
when the angular acceleration is constant, i.e., when the 
angular velocity changes uniformly. It is seen from Eq. (3a) 
that the angular acceleration is the slope of such a curve; 
this fact will be utilized in the present experiment. The 
absolute British and metric units of angular acceleration are 
identical, namely the radian per second per second. 
 
Rotational Inertia: Rotational inertia (also called moment of 
inertia) is that property of a body which causes it to oppose 
any tendency to change its state of rest or uniform angular 
velocity. It will be observed that this property is analogous in 
rotary motion to inertia in linear motion, as inertia is that 
property of matter by virtue of which the body opposes any 
tendency to change its state of rest or uniform linear velocity. 
The measure of the rotational inertia I of a body is the ratio 
of the torque L acting upon it to the angular acceleration a 
produced by that torque. In symbols the defining equation is 
 
                                   I = L a                                           (4) 
 
When Eq. (4) is written in the form 



                                    L = Ia                                          (4a) 
 
its analogy to the familiar equation for linear motion involving 
force, inertia and acceleration- namely, f = ma - is apparent. 
It may easily be shown that Eq. (4a) is merely another form 
for stating Newton's second law of motion, as applied to 
rotary acceleration. The absolute metric unit of rotational 
inertia is the centimeter-dyne per radian per second per 
second; this is the equivalent of the gm-cm2. 
 

 
 
The Determination of Rotational Inertia: The rotational 
inertia of a simple geometrical solid can be calculated by 
special equations derived by the use of integral calculus. For 
example, the rotational inertia of a uniform cylinder of radius 
r and mass M rotating about its longitudinal axis is given by 
 

                                 I =
1
2
Mr2                                        (5) 

 
The rotational inertia of an object about any axis may be 
obtained experimentally, no matter how irregular or non-
homogeneous the body may be, by applying a known torque 
to the body and measuring the resulting angular 
acceleration. From Eq. (4), 
 
                            I = L a = fr a                                    (6) 
 
where f is the applied force, and r is its lever arm. 
In this experiment the rotational inertia of a circular disk is 
measured by applying a known torque (due to a known 
weight fastened to a cord wrapped around the rim of the 
disk), and measuring the resulting angular acceleration by 
the use of a technique described later. 
 
The Accelerating Force: It might be thought at first glance 
that the accelerating force on the disk is equal to the weight 

mg of the object attached to the cord. This is true when the 
disk is at rest. But when the object is moving downward with 
an acceleration a, its inertia m gives rise to a force which is 
opposite in direction to the weight (Fig. 2). Since the object 
has an acceleration downward, the tension f in the cord is 
less than the weight mg. To determine the tension it is only 
necessary to apply Newton's third law of motion, equating 
the acting and reacting forces. Hence 
 
                       mg = f +ma   or f =m g − a( )            (7) 

 
The linear acceleration of the 
descending object is the same 
as that of the rim of the disk to 
which the cord is attached. Since 
the linear acceleration of a 
particle equals its angular 
acceleration multiplied by its 
radius of rotation, or 
 
              a = ar                   (8) 
 
Eq. (7) may be written as  
 
      f =m g − ar( )            (9) 
 
and hence Eq. (6) becomes 
 

       I =
m g − ar( )r

a
       (10) 

 
This is the working equation of this experiment since it 
makes it possible to determine I in terms of the known value 
of g and the measurable quantities m, a and r. 
 
APPARATUS: The chief piece of apparatus is the rotational 
inertia disk and assembly (Fig. 3). The disk is mounted on a 
horizontal axis in precision pivot bearings, so as to turn with 
negligible friction. It is made in three cylindrical steps, of 
simple geometric form, so that the rotational inertia of each 
part can be readily calculated. Upon the plane face of the 
large disk there is fastened with bits of Scotch tape a sheet 
of coated paper, with polar-coordinate rulings in degrees. A 
spark point, mounted on a simple slide with insulating 
supports, is arranged to move across the face of the disk as 
it rotates. High-potential sparks, passing at regular intervals 
from the point to the disk, puncture the paper, and the heat 
thus developed melts a bit of the paraffin coating and causes 
a clearly recognizable spot. The location of these marks 
upon the printed scale gives the angles traversed during 
successive equal time intervals. The wheel bearings are 
supported by a frame so designed as to permit the thread 
which accelerates the disk to clear the edge of the table. The 
accelerating weight is attached by a light silk cord wound 
around the rim of the disk and fastened to a pin on its 
periphery. 
The spark timing device, or spark timer (Fig. 4), consists of 
an electrically-maintained vibrating steel bar provided with 
electric contacts for making and breaking a circuit at equal 
intervals, the length of one interval being the full period of 
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the bar. Two sets of contacts are provided, one of which is 
used in maintaining the vibration by opening and closing the 
circuit through an electromagnet; the other set, independent 
 

 
 
 

 
 
of and insulated on one side from the first, opens and closes 
the primary of a spark coil for producing the timed sparks. 
The secondary terminals of the spark coil are connected to 
the two binding posts on the rotational inertia apparatus. 
Electrical connections on the spark timer are as shown in 
Fig. 5. A 6-volt storage battery is connected to the two center 
binding posts V. The primary of a spark coil is connected to 
the "spark-coil" binding posts S. One of the terminals on the 
secondary of the spark coil is connected to the insulated 
 

 
 
 

sparking point near the disk; the other secondary terminal is 
connected to the grounded frame of the rotational inertia 
apparatus. The impulse counter, used to measure the 
frequency of the vibrations, is connected to the binding posts 
I. 
The impulse counter, Fig. 6, counts the electrical impulses 
which produce the sparks. Each impulse causes a sweep 
hand to move one division on the dial, one complete 
revolution of the pointer representing 60 impulses. A small 
pointer records the number of whole revolutions. A push-
button key must be depressed to complete the circuit 
through the counter. By rotating the push-button it may be 
locked down in the operating position. A stopwatch or clock 
is used to measure the time of a suitable number of impulses 
registered on the counter and hence to determine the time 
interval between sparks. 
As additional auxiliary apparatus there are needed a vernier 
caliper, a set of slotted iron weights of 1gm to 200gm, a 
50gm weight holder, a spool of silk thread, several coated 
charts, a roll of Scotch tape, scales capable of weighing the 

disk, a half-meter stick with caliper jaws, 6-volt storage 
battery, a double-pole, double-throw switch, stop watch or 
clock, two C-clamps, scissors, and an outside caliper. 
 

 

Fig. 3. Rotational Inertia Apparatus. The insert shows the three-step disk. 
The wheel is shown covered with the coated-paper chart with polar-
coordinate rulings. 

 
PROCEDURE: 
Experimental: For a preliminary trial fasten a used 
sensitized chart to the disk by means of a few pieces of 
Scotch tape touching the edge of the chart and bending over 
the periphery of the wheel. Replace the disk on its supports 
and tighten the knurled screw. Wrap the silk cord several 
times around the rim, fastening one end to the pin provided 
for that purpose and the other end to the accelerating 
weight. A fall of the latter of one and one half to two meters 
is desirable. This may be obtained by mounting the 
 

 

Fig. 4. Spark Timer 

 
 

Fig. 6.  Impulse Counter which accurately indicates the frequency of the 
vibrating bar of the Spark Timer. 

 
rotational inertia apparatus upon a high table or shelf. The 
spark point should be adjusted so that it is about 1/32 inch 
from the chart. Connect the spark timer, induction coil and 
impulse counter as indicated in Fig. 5. The frequency of the 
vibrator should be kept at about 8 per second. The vibrating 
bar and stationary contacts should be adjusted so as to be in 
alignment. The stationary contacts should be arranged so 
that when the bar is at rest there will be a gap of ¼ to ½ 
millimeter between the contacts of each set. The contacts 
should be secured in this position by means of the lock nuts. 
To increase the amplitude of vibration, the electromagnet 
adjusting screw is turned so as to bring the electromagnet 
closer to the bar; to reduce the amplitude it is moved away 
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from the bar. The make and break contacts on the spark coil 
should be carefully closed so that the breaker cannot vibrate. 
Be sure that the frame of the spark timer, the frame of the 
rotational inertia apparatus and one side of the induction coil 
secondary are well grounded. The spark timer should be 
firmly clamped near its center to the table. 

as abscissas. 

 

A part of the force applied to the disk is used in overcoming 
friction. To minimize the error which this would cause a small 
weight should first be attached to the cord and adjusted until 
it is sufficiently large to neutralize the friction. The proper 
force will have been applied when, after the wheel has been 
given a slight initial rotation, the weight descends thereafter 
with constant speed. Next increase this weight by about 20 
per cent to allow for its own "loss of weight" when it is falling 
with an acceleration, as it will be when the accelerating 
weight is applied. Attach a 100gm mass to the cord, in 
addition to that found to be necessary to overcome the 
friction. When all is in readiness and the sparks are coming 
regularly, release the wheel, without giving it an initial 
velocity, and begin slowly to move the spark point in toward 
the axis. Just before the descending object reaches the floor, 
open the switch which stops the sparks. Examine the trace 
carefully to see that all the sparks have registered. Afresh 
chart may be applied to the disk when the technique of 
running the apparatus has been mastered. 

 
Locate the points for each average angular velocity at the 
mid-point (not the end) of the corresponding time interval. 
Since the curve is a straight line, indicating uniform 
acceleration, the average angular velocity is identical with 
the actual angular velocity at the middle of the interval. From 
the slope of the angular velocity-time curve, determine the 
angular acceleration. (Choose points as far apart as 
conveniently possible when determining the slope.) Plot a 
second curve and determine the angular acceleration for the 
second case, when the 200gm accelerating weight was 
used. 

Attach another fresh chart and repeat the manipulation, 
using an accelerating weight of 200gm, in addition to that 
required to overcome friction. 
The impulse counter should be left in the circuit while the 
spark timer is in operation, if possible, so that the time 
interval may be determined without any changes in the 
electrical circuit. Also, the contact and electromagnet 
adjustments on the timer should be left unchanged until the 
time interval has been determined. Measure with a 
stopwatch or clock the time corresponding to a suitably large 
number of impulses indicated on the counter. A time of at 
least one or two minutes should be used. By dividing this 
time, in seconds, by the number of impulses during the time, 
the time interval T between consecutive sparks is obtained. 

All of the above may be done by using the angles in 
degrees, to avoid unnecessary calculations. The final values 
of the angular accelerations must, however, be expressed in 
radians per second per second. 
Having measured the values of a, substitute these and the 
other necessary data in Eq. (10) and calculate the 
experimental values of I. Note the percentage difference 
between the two values, as this gives one measure of the 
experimental uncertainty. 

Measure the mass of the disk (if its value is not stamped 
upon it). With the vernier caliper determine the respective 
radii of each of the three steps of the disk, R1, R2 and R3 
(Fig. 7). Measure also the thicknesses of each step, i.e., the 
axial length of each cylinder, l1, l2 and l3. Some of these 
measurements may be made best with a vernier caliper, 
others with an outside caliper and a meter stick, or a meter 
stick provided with caliper jaws may be used. In recording 
these data it would be well to make a large sketch, similar to 
Fig. 7, and to indicate upon it the observed dimensions. Note 
and record the angular positions of consecutive spark prints. 
These may be recorded in degrees. By subtraction obtain 
the differences between consecutive readings. These 
differences are the angular distances passed over during 
succeeding equal time intervals T. By dividing each of these 
distances by the time interval T, the average angular 
velocities for these intervals are obtained. The interval T 
should be in seconds, so that the angular velocities will be in 
degrees/second. 

 
Computed Value of I: The disk is made of three steps, of 
different radii. The total rotational inertia: I is the sum of the 
separate rotational inertias of the three cylinders. In symbols 
 

             I =
1
2
M1R1

2 + M2R2
2 +M3R3

2( )                 (11) 

 
where M1 = mass of large disk 
           M2 = mass of smaller disk 
           M3 = mass of shafts 
           R1 = radius of large disk 
           R2 = radius of smaller disk 
           R3 = radius of shafts 
 
The masses of the three parts may be calculated by 
multiplying the density and respective volumes of the parts. 
The density may be obtained by dividing the total mass by 
the total volume. 

 
Computations and Interpretation of Data: Plot a curve 
similar to Fig. 1 showing the relation of average angular 
velocity to time, using angular velocity as ordinates and time A simpler method for computing I is as follows. Refer to Fig. 

4 



7 for the meaning of the symbols. Since 
 

                                M1 = M
V1

V
 

                               M2 = M
V2

V
 

                               M3 = M
V3

V
 

 
where V is the total volume and V1, V2 and V3 are the 
respective partial volumes, it is possible to write Eq. (11) as 
 

             I =
1
2
M
V
V1R1

2 + V2R2
2 + V3R3

2( )                 (12) 

 
Substituting in Eq. (12) for each volume its equal in terms of 
its respectiveπR2l , 

                 I =
1
2
M
R1

4l1 + R2
4l2 + R3

4l3
R1

2l1 + R2
2l2 + R3

2l3
                    (13) 

 
Note the percentage difference between the calculated value 
of I from Eq. (13) and the average of the two experimental 
values. 
 
Optional Analysis: 1. Plot a curve showing the relation of 
the total angular distance traversed to the times required to 
move those distances. Discuss the shape of the curve. 
    2. By choosing corresponding values of total angular 
distances traversed and the appropriate average angular 
velocities, plot an angular velocity vs. angular distance 
curve. Explain its shape. 
    3. Select some point on the curve of angular distance vs. 
time and draw a tangent to the curve. From the slope of the 
tangent determine the angular velocity at that instant and 
compare it with the computed value. 
 
QUESTIONS: 1. The first spark point does not occur when 
the angular velocity is zero. What effect will this have upon 
the observed value of a? Explain. 
    2. If data were taken for angular distances traversed after 
the accelerating force had been removed and the 
corresponding angular velocities plotted against time, what 
sort of curve would be expected? Why? 
    3. From the units of torque and angular acceleration, show 
that the absolute metric unit of rotational inertia is the gram 
(centimeter) 2. 
    4. Explain how, by a simple experiment involving 
rotational inertia, it would be possible to determine which of 
two identical-appearing eggs was hard cooked and which 
was uncooked. 
    5. Derive a symbolic expression for the linear acceleration 
of a sphere which starts from rest and rolls down a plane 
inclined an angle θ  to the horizontal. (Answer: a=5/7gsinθ . 
The value of I for a sphere may be assumed, namely 
I=2/5mr2.) 
    6. What portion of the total kinetic energy of a rolling solid 
disk is energy of rotation? 
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