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GRAPHS AND EQUATIONS 
 

INTRODUCTION: Experimental work in science is frequently 
a study of the relationship between two interacting variables. 
For example the following questions might be answered from 
experimental data. How does the velocity of a falling body 
vary with time? What is the angular distribution of radiant 
energy transmitted through a small opening? What is the 
pressure response frequency characteristic of a crystal 
telephone receiver? 

 

When experiments are performed, the independent variable, 
in these examples time, angle, and frequency, is 
progressively changed, and the corresponding values of the 
resulting dependent variable, velocity, intensity, and 
response respectively, are measured for a series of tests. 
These data are appropriately recorded in an organized table, 
that is, in tabular form. straight line indicated by the other readings. 

 A display of the data as a graph shows more clearly than the 
tabular form how the one quantity, or property, is related to 
the second. The graph also indicates probable experimental 
errors and provides values intermediate to the several 
readings. 

 

The most powerful form in which the relationship of the 
variables can be expressed is a mathematical equation. 
Such equations permit various mathematical expansions and 
the deduction of additional information. A straight line curve 
on a graph may be converted quickly to the equation form. 
Obtaining a straight line curve may require the selection of 
suitable conversion factors for the axis values, or a special 
type of graph paper. These techniques, the basis of this 
discussion, reduce the laborious matching of curves of 
empirical equations to a reasonable "match" of the original 
graph form. 
 
GRAPHICAL PRESENTATION OF DATA: Various types of 
graph paper are available for the presentation of data. Each 
type has its own specific advantages. The three types of 
graph paper most commonly used are rectangular 
coordinate paper, polar coordinate paper, and logarithm 
paper. The latter is usually called log paper. These papers 
will be used to illustrate the three examples or questions 
mentioned in the Introduction. 
Typical laboratory data for the first problem, "How does the 
velocity of a falling body vary with time?", are given in tabular 
form in Table I. At time t = 0 the initial velocity reading vo was 
15.0m/sec. 

 
The angular distribution of radiant energy, sound or light, 
transmitted through a small opening is shown best on polar 
coordinate paper. See Fig. 2. The plane wave energy of 
wavelength λ  approaches the opening of width w from the 
bottom. The relative intensity of the radiation propagated at 
each angle is plotted. Thus, for Fig. 2(a), where the 
wavelength equals the width of the opening, that is λ = w, 

The graph (Fig. 1) of these data on rectangular coordinate 
paper shows a steady increase in velocity during the 5 sec of 
free fall. The velocity at 2.6 sec may be read from the graph 
as 40.5m/sec, and the expected velocity at 5.5 sec is 69.0 
m/sec. Evidently the readings taken at 2 sec and 4 sec have 
the greatest experimental error. They do not fall on the 



the intensity at 20° from the normal is approximately 70% of 
the intensity measured at 0°. The intensity value has fallen to 
about half its maximum value at an angle of 35°.  
Note that the major portion of wave energy transmitted 
through this small opening is in the forward direction. Figure 
2(b) shows that when the size of the opening relative to the 
wavelength becomes larger, the energy flow not only 
concentrates into a narrower forward cone, but also 
produces secondary minima and maxima on either side of 
the opening. Notice the large difference in the two graphs 
when the angle is 30°. For λ  = w the intensity is about 60% 
of maximum, whereas the intensity at the same angle for 

 
 Fig. 2 (b). 2w λ=  
 

 
 w
 

λ  = w/2 is almost zero. This intensity distribution is the 
result of diffraction and interference. The field of distribution 
is made very evident when the data are presented in 
graphical form. 
Polar coordinate paper of 360° is selected to show the 
angular distribution of radiant power from a source as, for 
example, the luminous flux from a light source or the power 
in a sound wave radiated by aloud speaker. The essential 
feature in the use of polar coordinate paper for such 
purposes is the clearness of its visual presentation. 
Data for the third problem stated in the Introduction, "What is 
the pressure response frequency characteristic of a crystal 
telephone receiver?", are plotted in Fig. 3. Since the hearing 
response of the ear is nearly proportional to the logarithm of 
the physical intensity of the sound, the ordinate is plotted in 

decibels. To accommodate the great frequency range of the 
ear and the relative contribution of these frequencies to our 
hearing, the abscissa points are plotted here on a 
logarithmic scale of three cycles, 101 to 102, 102 to 103 and 
103 to 104. For this scale the linear distances are 
proportional to the logarithms of the graduated coordinate 
scale. This method of plotting data on semi-log paper gives a 
visual picture comparable to the sounds heard by the ear. 
Note that this receiver has a low response for frequencies 
under 250vib/sec. Its highest response is in the range 300 to 
about 6000vib/sec, with relatively large fluctuations. Since 
intelligibility of speech lies in this range, this receiver would 
be acceptable for telephone conversation but certainly no 
"Hi-Fi" enthusiast would select it as a component of his 
equipment. 
If the response had been measured in watts per square 
centimeter instead of decibels, a comparable graph to Fig. 3 
could have been plotted directly on log-log paper, which has 
a logarithm scale for both the x and the y axes. The plot on 
log-log paper would give similarly the most meaningful 
picture of the response of the receiver relative to hearing. 

 
 
 

Fig. 3. Pressure response-frequency characteristic of a receiver. 

EMPIRICAL EQUATIONS: The most powerful form of 
expressing an observed experimental relationship is an 
equation. This is a relatively easy task when the plotted 
curve is a straight line. If the curve is not a straight line the 
task becomes more difficult and may even require a 
laborious series of attempts to "match" test equations to the 
curve. The experimenter would not spend time trying to 
match an equation to the curve of Fig. 3 for several reasons: 
(a) each receiver has its own particular curve; so little is 
gained by even a successful attempt; (b) the curve alone 
gives an adequate picture of the response; (c) the unique 
form of the curve shows that it is practically an impossible 
job. 

Fig. 2. (a). λ=  

 
LINEAR RELATIONSHIP: Figure 4 is another plot of the 
data of Table I. The straight line shows a linear relationship 
between velocity and time. The equation relating these 
variables is, therefore, of the form y = a x + b. In this 
equation a is the slope of the line and b is its y intercept. 
The slope dv/dt of the line of Fig. 4 is calculated as follows. 
 
dv
dt

= cons tan t =
(64.0 −15.0)m / sec

(5 − 0)sec
= 9.80m / sec2

 
This number is recognized in free fall as the acceleration due 
to gravity for which the symbol g is used. 
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            s = (15 × 5)m + 1
2 (9.8)m / sec2 (5)2 sec2  

 

 
                       s = 75m +122.5m = 197.5m  
 
Starting from rest, that is v  = 0, the distance s in 5 sec 
would be 122.5m. The values in Table II were computed by 
the use of this equation. 

o

 
NON-LINEAR RELATIONSHIP: The data for many relation-
ships in science, when plotted on rectangular coordinate 
paper, do not produce a straight line curve of the type y = a x 
+ b. An attempt is then made to find a method of plotting 
which will give a straight line. Experience and judgment are 
valuable elements in this operation of recognizing the 
original curves as hyperbolas, parabolas or some form of 
power or exponential curve. Each will be discussed in turn. 

 

Thus 

                                   
dv
dt

= g                                            (1) 

                                   dv  = gdt
                                   v  = gdt
 
The value of the constant b is the velocity when t = 0. This 
initial velocity is designated vo and is the velocity intercept of 
the curve [vo = 15.0 m/sec]. 
Hence the equation of the straight-line curve of Fig. 4 is 
 

                  v = vo + gt =
15m
sec

+
9.80m
sec2 × t                 (2) 

  
Frequently when the initial equation is obtained, other 
information becomes available, through mathematical 
processes. Proceeding, we obtain 

Rectangular hyperbola: The solid line curve of Fig. 5 
represents the pressure-volume relationship of a given mass 
of gas at constant temperature. Noting the symmetry of this 
curve should suggest that it might be a rectangular 
hyperbola expressed by the equation                                     v =

ds
dt

 
 

                       ds  = vdt = (vo + gt)dt                                       p v = c                                            (4) 
or  

                          s = vot +
1
2
gt2 + c                                 (3) 

This equation may be rewritten in linear form as p = c (l/v) 
where c is the slope of the straight line. 
The test of this suspected form would be to plot pressure 
versus the reciprocal of the volume to see whether or not a 
straight line curve is obtained. This plot of p vs. l/v is the 
straight dash line of Fig. 5 having a slope of 24lb.-ft. Hence 
the equation of Boyle's law to fit these data is p v = 24 lb.-ft. 
Since p is expressed in lb/ft2 and v in ft3, the constant 24 
must have the units lb.-ft. 

 
where c is the constant of integration and may be evaluated 
from boundary conditions of  t = 0, s = 0, hence c = 0. 
Thus, obtaining the equation of the curve leads also to a 
simple expression for the distance s of free fall at any time t 
for the falling body of the data given in Table I. At a time t = 5 
sec, this body will have fallen a distance 
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Parabola: A common physical relationship is of the type 
expressed by the equation 

where the power n may be any value. 

 

                                    y                                          (5) = kx2

 
The plot of the data of this equation results in a parabola, 
shown by the solid line of Fig. 6. It is evident that Eq. 5 
would plot as a straight line on rectangular coordinate paper 
providing the graph axes are expressed as y and as x2. This 
is the straight dash line of Fig. 6. 
Examples of physical relationships which have the form of 
Eq. 5 are: Length vs. Period of a simple pendulum, Tension 
vs. Frequency of a vibrating stretched string, and Distance 
vs. Time for the free fall of a body from rest. The free fall 
distance versus time equation was derived as Eq. 3 and for 

 = 0 is vo
                                  s =

1
2
gt 2                                          (6) 

 

 

 
This equation expressed logarithmically to the base 10 
becomes 
                       log y = logk + nlog x     

                log x =
1
n

 
 

 
 
log y −

1
n

 
 

 
 
log k                        (8) 

or 

                        log x =
1
n

 
 

 
 
log y + c                              (9) 

Equation 8 (and also Eq. 9) is the equation of a straight line 
which is linear in log x vs. log y. It has a slope equal to l/n, 
where n is the power of x. 
The numerical value of k must be that of y when x = 1 (see 
Eq. 7). This is also evident in Eq. 8 since when x = 1 the 
value of log x = 0 and since n ≠ 0, 
                             log k = + log y  
or 
                                     k = y  
 
To test these conclusions a plot of the log values of Data 
Table II, obtained by using the equation 

                                  s =
1
2
gt 2  

should give a straight line of slopes =
1
2
gt 2 , since the 

power of t is 2. This plot is shown in Fig. 7. Note that it does 
give the correct slope value. The log value for t = 0.5 sec 
was not plotted. Since its value is 9.699-10, it could have 
been included as a value -0.301 on the y axis. 

 
The computed values t and s of Table II are plotted in Fig. 6. 
The use of the logarithm values is discussed in the next 
section. 

To eliminate the task of finding the logarithm values for the 
data the original readings of s and t may be plotted directly 
on log-log paper. This would be the usual procedure when 
the data are suspected of being a power-law type. Figure 8 
is a plot of t and s of Table II on two-cycle log-log paper. 

Power law: Equation (6), s =
1
2
gt 2 , is an example of a 

power-law equation. These have the general form Since the length of the cycle, 1 to 10 or 10 to 100 etc., is the 
same for both axes, the slope of the line is obtained from                                                                              (7) y = kx n
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 Fig. 9. Illustrative samples of power curves. 

 
value for x = 1, and the power is the length ratio of ordinate 
to abscissa lengths of a cycle.   

 

actual length measurements, as shown on Fig. 8. If the cycle 
lengths on the x and y axes are not the same, the "slope 
value" so obtained must be multiplied by a factor which is the 
ratio of the cycle lengths. The slope of Fig. 8 is again 1/2, 
showing that the power n of t is 2, that is s = kt2. 

 

 
For example, in curve D, k = 15 because y = 15 when x = 1; 

and since 
st
rs

= 2 , the power of x = 2. 

 
Exponential law: A good example of the exponential law 
relationship is evident in the ideal equation developed for 
thermal conductivity. See Selective Experiments in Physics 
Nos. H52b and H52c. This equation is used in the laboratory 
to determine the conductivity constant K expressed as 
 

                      t =
lms
KA

 
 

 
 
(loge I − loge Io )                    (10) 

Fig. 8. Power curve, s = kt2, on log log paper.  
 where I is a galvanometer reading. 
The constant k of Eq. 7 is the length reading for t = 1 sec, 
see dash line Fig. 8, giving again, as it must, the equation for 
the data of Table II 

This discussion centers (a) on transforming Eq. 10 so that 
the data plotted on semilog paper will give a straight-line 
curve and (b) on the method of determining the slope value 
on this type of graph paper. Since the loge 10 = 2.303 , 
expressing the equation in logarithms to base 10 gives 

s = (4.9m / sec2 )t2 =
1
2
gt 2  

                   t = −
2.303lms
KA

 
 

 
 
(log I − log Io )  

Figure 9 has samples of several power curves. Their 
equations are given in Table III. What letter designation fits 
each of the open sections? The constant k is the y-axis 
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Hence 

 

                  log I = log Io −
KA

2.303lms
 
 

 
 
t                    (11) 

 

 

 
straight-line. To find its slope value consider the following. 
Suppose in Fig. 11 that the measured length ab of one cycle 
is 22.4cm. For the triangle ecd the slope of the line ed on 
linear graph paper would be ce/cd. However in this case one 
needs the ratio of log I/t, and since the logarithms are 
proportional to the distances, the constant of proportionality 
being the length of 1 cycle, or 22.4cm. 

 

 
Equation 11 is a linear equation which will graph as a 
straight line when log I is plotted against t. The slope of the 
line is 

                       
log I
t

= −
KA

2.303lms
 
 

 
 

 

 
Two graphs are possible: (a) the plot may be on rectangular 
coordinate paper by plotting Log I against t; (b) the values of 
I and t may be plotted directly on paper having a logarithm 
scale for I and a uniform scale for values of t. Such paper is 
called semilog paper. The two graphs are shown in Fig. 10 
and Fig. 11, using the data of Table IV. The two graphs must 
give the same slope, thus providing a check on the method 
used to find the slope of a line on semilog paper. Remember 
that on logarithm paper the logarithms of the numbers are 
proportional to the distances from the origin of the cycle just 
as is true for slide rule scales. 
The graph Fig. 10 on rectangular coordinate paper gives a 
slope value of −  per sec. Thus, since the slope 6.0 × 10−4

= −
KA

2.303lms
 the conductivity constant K of the test 

material used may now be computed provided it is the only 
unknown quantity of the right hand member.  

Fig. 11. Graph of current against time on semilog paper.  
 
Thus the slope of ed on semilog paper is 
 

           
ce ab
cd

=
−5.7 22.4

7 × 60
= −6.1×10−4 per sec. 

The graph of Fig. 11 is on semilog paper. The abscissa for 
time values is a uniform scale, whereas the ordinate is a log 
scale. In this case only one cycle is used. The curve is a 

 
This is the same slope, within experimental error, obtained 
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from the graph of Fig. 10. 

 

Another method to obtain the slope of the line ed of Fig. 

11 is as follows. The slope a =
∆ log I

∆t
 

 
EXERCISES AND QUESTIONS 
1. A meter, designed to read luminous flux, gives the 
following data for a hanging lamp. The directions below and 
above the lamp are 0° and 180° respectively. All readings 
were taken at the same distance from the lamp. 

 

 
    6. Would a plot of the values of i and d taken from the 
curve of Problem 3 plot as a straight line on log log paper? 
Why or why not? (If in doubt, try it.) 
    7. A rather common laboratory experiment gives these 
typical data. 

 

Plot the data and interpret the curve. Sketch a lamp 
arrangement which would give these data. 
    2. The transmission curve of a given glass light filter is 
shown in Fig. 12. The letters V B G Y O R are color 
designations, Violet to Red. Interpret the curve giving 
wavelengths of maximum and minimum transmissions. 
What is the color of the light transmitted through this filter 
when the light source is 
        (a) a sodium lamp which emits yellow light of 
wavelength 580mµ? 
        (b) a white light comparable to the sun? 
    3. The following data were obtained in an experiment 
relating the independent variable i to the dependent variable 
d. 

 

Plot the curve on rectangular coordinate paper. What is the 
curve called? Write the equation for this curve when the line 
of the x axis gives symmetry to the curve. 
    8. Recheck the answers expressed in Table III. Construct 
another line of different power and write its equation.  

 

Plot these data on rectangular coordinate paper. 
        (a) What is the slope value? 
        (b) What is the value of the d intercept? 
        (c) Write the equation for the curve. 
        (d) What is the value of d when i = 3.7? 
    4. Given a table of data, what would be a quick 
mathematical method to show that the curve plotted on 
rectangular coordinate paper would be a hyperbola? 
    5. Suppose there is reason to believe that the following 
data support some form of power curve y = axn. Show how 
to proceed with the data to obtain the equation. Write the 
equation. Fig. 12. Transmission of light by a color filter. 
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