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ERRORS 
 

I. INTRODUCTION: Observations are taken in the laboratory 
and from these observations certain conclusions are drawn. 
Since no observation or series of observations is absolutely 
accurate, it is often desirable to check the dependability of 
the conclusions by a study of the errors in the experiment. 
Suppose that an experiment on the relation between the 
pressure and volume of a gas is performed in the laboratory 
and that the conclusion is the statement of the law that the 
volume is inversely proportional to the pressure. The 
experiment does not prove that the law is absolutely 
accurate but only that within certain limits, determined by the 
accuracy of the experiment, it has been found to be true. 
Small departures from the law will always be found and it 
should be possible to determine whether these departures 
indicate that the law is not exactly true or whether they are 
due to unavoidable experimental errors. Even if in this 
experiment no significant departures were found, 
observations with more refined apparatus might show 
conclusively that the law was only an approximation to the 
truth. 
 
II. SIGNIFICANT FIGURES: In most experiments a detailed 
study of the probable error is not required. Usually it is 
sufficient to indicate roughly how accurate the result is. In 
elementary work all the sure figures and one (but only one) 
of the estimated figures are recorded so that in merely 
writing down an observation an estimate of its accuracy is 
indicated. In Table I are recorded five observations each of 
the length L, width W, and thickness T, of a block of wood. 
The first observation of T is 3.57cm. The first two figures are 
known but the third figure 7 is doubtful. Although the 7 is 
 

 
 

doubtful it does have significance. We feel reasonably sure 
that the correct value is between 5 and 9, say, and we have, 
therefore, three significant figures. The location of the 

decimal point has nothing to do with the number of 
significant figures. Whether written as 3.57cm, 35.7mm, or 
0.0357m, this item has three significant figures. When a zero 
serves merely to locate the decimal point it is not a 
significant figure. However the zero in the third observation 
of W is the first doubtful figure and is significant. To omit this 
zero would be wrong, for that would indicate that the 
preceding 2 was doubtful. 
Each value of T has three significant figures and since there 
is considerable variation in the third figures, three significant 
figures should be used in expressing the average. In other 
words, the second 5 in the average is doubtful and the 
average is known to three significant figures. However, in the 
observations of W the variations in the third figure are so 
small that the third figure 1 in the average can hardly be 
called doubtful and in the average we are justified in keeping 
four significant figures. 
The product LWT is 313.9735020cm3. However, this does 
not correctly represent the volume. It indicates that all the 
figures are known except the final zero, and, of course, this 
is far from true. Since an error of 1%, say. in anyone of the 
factors will cause a 1% error in the result, the volume cannot 
be determined to any greater degree of accuracy than the 
least accurate of the factors. Although it is difficult to make 
hard and fast rules about significant figures we may say that, 
in general, in multiplication and division the result should 
have as many significant figures as the least accurate of the 
factors. In some cases the answer should have one more 
significant figure than the least accurate of the factors. For 
example, in the equation 9.8 x 1.28 = 12.5, if the answer is to 
be as accurate as the least accurate of the factors, it must 
have three significant figures although the least accurate 
factor has only two. An inspection of the equation should 
make clear why this is true. The rule must be supplemented 
by the judgment of the experimenter. The volume of the 
wooden block should, therefore, be recorded as 314cm3. Do 
not carry worthless figures through a series of computations 
only to discard them at the end. To save time keep only one 
or two doubtful figures throughout the computations. This will 
not affect the accuracy of the result. In addition and 
subtraction the case is entirely different. Suppose that a 
certain metal rod is 126.73cm long at 20˚C and that 
experiment shows that when heated to 100˚C the increase in 
length is 0.2138cm. The new length is 126.73cm + 0.2138cm 
= 126.94cm. Since the numbers to which the 3 and 8 are to 
be added are unknown (there is no reason to believe they 
are zeros) the sum is known to 2 decimal places only. From 
the above illustration it should be clear that when numbers 
are properly arranged in columns for a computation in 



addition or subtraction, if any digit in a column of digits is 
unreliable, the answer in that column is likewise unreliable. 
 
III. CLASSIFICATIONS OF ERRORS: An error that tends to 
make an observation too high is called a positive error and 
one that makes it too low a negative error. Errors can be 
grouped in two general classes, systematic and random. A 
systematic error is one that always produces an error of the 
same sign, e. g., one that would tend to make all the 
observations of some one item too small, say. A random 
error is one in which positive and negative errors are equally 
probable. Systematic errors may be subdivided into three 
groups: instrumental, personal, and external. An 
instrumental error is an error caused by faulty or inaccurate 
apparatus. Personal errors are due to some peculiarity or 
bias of the observer. External errors are caused by external 
conditions (wind, temperature, humidity, vibration, etc.) 
To understand better these various kinds of errors, let us 
study the errors in a particular experiment. In this experiment 
two observers, in an attempt to measure the velocity of 
sound, use a pistol and a 1/20sec stop watch to measure the 
time required for sound to travel between two points. The 
first observer fires the pistol and the second observer uses 
the stop watch to measure the time required for the sound to 
reach him. This simple experiment may be used to illustrate 
all the types of errors listed above. It should be possible to 
determine the sources of error. analyze these errors, and 
assign each to its proper classification. This is done in the 
paragraphs immediately following. 
 
    (A) Systematic Errors. 
 
        (1) Instrumental Error. Since the stop watch is the 
only instrument used in this experiment, all instrumental 
errors must come from faults in the watch. A stop watch that 
did not run at the proper rate would cause an instrumental 
error. If the watch ran too fast all the observed times would 
be too high. Readings taken by a stopwatch are also subject 
to another type of systematic error. It takes an appreciable 
time merely to start or stop the mechanism of a watch. If the 
lag at starting is not equal to the lag at stopping, error will 
result. To reduce instrumental errors the instrument should 
be checked with an accurate standard and the necessary 
corrections applied to the observations. If a high degree of 
accuracy is called for, the instrument may be sent to the 
National Bureau of Standards for calibration. 
        (2) Personal Error. There are several ways in which 
the bias of the observer or his particular method of taking 
data might produce systematic errors. Two of these will be 
considered. Owing to the difference in the way he reacts to 
the flash of the pistol and the report that he hears, an 
observer might tend always to get time readings which are 
too large, say. It also might be true that having been warned 
by the flash of the gun he will be more alert and react more 
quickly in stopping the watch than in starting it. Personal 
errors maybe minimized by taking the observations under 
various conditions and by using several observers working 
independently. 
        (3) External Errors. External errors are usually caused 
by conditions over which the observer has no control. 
Therefore they cannot be eliminated, but necessary 
corrections may be applied. In this experiment the error due 

to wind might be quite serious. To keep this error small the 
experimenters might follow any of the following procedures: 
choose a time when there is very little wind, measure the 
wind velocity and make the necessary corrections, or 
change positions with each other so that when the results 
are averaged the errors tend to cancel out. 
    
 (B) Random Errors. In this experiment 26 observations of 
the time required for sound to travel between two points are 
taken. These observed times are recorded in column II of 
Table II. Since a systematic error would affect each 
observation in the same way, the variations in this column 
 

 
 
are not due to systematic errors. We believe that each of 
these errors is due to a large number of factors each of 
which adds its own small contribution to the total error. Since 
these factors are unknown and variable it is assumed that 
the resulting error is a matter of chance and therefore 
positive and negative errors are equally probable. Such 
errors are called random errors; some authors prefer to call 
them accidental errors. Owing to the fact that random errors 
are subject to the laws of chance, their effect on the 
experiment maybe made quite small by taking a large 
number of observations. It should be clear why increasing 
the number of observations has no effect on systematic 
errors. 
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IV. PROBABLE ERROR: Since the variations in the 
observed times t (column II, Table II) are governed by 
chance, one may apply the laws of statistics to them and 
arrive at certain definite conclusions about the magnitude of 
the errors. 

The difference between an observation and the arithmetic 
mean a.m. is called the deviation d and the average 
deviation a.d. is a measure of the accuracy of the 
experiment. Obviously, the average deviation is the sum of 
the deviations divided by the number of observations, a.d. = 
Σd/n. Deviations of the observations from the a.m. are 
recorded in column III, in which negative deviations are 
placed on the left side of the column and positive deviations 
on the right. Adding separately it is seen that the sum of the 
positive deviations is approximately equal to the sum of the 
negative deviations. Ideally they should be exactly equal. 

 

To study the distribution and significance of the deviations, 
these deviations are plotted in Fig. 2 in much the same way 
that observations were plotted in Fig. 1. Each dot represents 
the deviation of one observation. Let us divide the 
observations into groups by the vertical lines a, b. c, etc., 
which divide the figure into slices each 1/10 sec wide with 
zero deviation at the midpoint of the central slice. In the 
figure the number of observations in each slice is 
represented by across (X) at the midpoint of the slice and 
the best smooth curve is drawn through these points. The 
curve therefore represents the relation between the 
magnitude of the deviations and the frequency with which 
they occur. From this graph the following general rules may 
be inferred: 

 

 

    (1) Positive and negative deviations are equally probable. 
    (2) Small deviations occur more frequently than large 
deviations. 
Theory indicates that the relation between the probable error 
p.e. of a single observation, the sum of the deviations Σd 
(added without regard to sign) and the number n of 
observations is given by the equation 
 

                    p.e. = 0.8453
d∑

n n −1( )
                           (1) 

 
If this equation is applied to the data in Table II, we find that 
 

                      p.e. =
0.8453 × 2.25

26 × 25
= 0.075                (2)  

No attempt will be made to derive these statistical laws, but 
the ones that are pertinent to this discussion will be simply 
stated. Along the horizontal axis of Fig. 1 are plotted 
observed times and each dot represents one observation. 
For example, three of the twenty-six observations of time 
gave 1.60sec. It is clear from this figure that the data tend to 
cluster about a certain mean value. What value is the one 
having the highest probability of being correct? To answer 
this question the methods of statistics are used and although 
the proof is rather difficult the conclusion is quite simple. It 
indicates that the best average is obtained by dividing the 
sum of the t's by the number of observations n. This is the 
simple method of averaging with which the reader is already 
familiar and an average obtained in this way is known as the 
arithmetic mean a.m. In other words, the arithmetic mean, 
obtained by dividing the sum of the observed values by the 
number of observations taken, represents the best value 
obtainable from a series of observations. The a.m. in this 
experiment is found to be 1.540sec and is represented by 
the vertical line in Fig. 1. 

 
This does not mean that no observation will deviate by more 
than 0.075 sec from the mean. It does mean that the 
chances are 50 to 50 that the error of a single observation 
will not exceed 0.075 sec; or. what amounts to the same 
thing, if a large number of observations are taken, half of 
these observations will have errors less than this amount. In 
Fig; 2 vertical lines P and P' are drawn at d = -0.075 and d = 
+0.075. It can be seen that halt of the observations lie within 
these limits. Obviously, the probable error P.E. of the a.m. is 
less than the probable error p.e. of a single observation. P.E. 
may be computed by the equation 
 

         P.E. = 0.8453
d∑

n n −1
= 0.8453

a.d.
n −1

        (3) 

 
remembering that a.d. = Σd/n. which in this experiment gives 
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                P.E. =
0.8453 × 2.25

26 × 5
= 0.015                    (4) 

 
and one may write as the result of the twenty-six 
observations of time t that t = 1.540 ± 0.015. Again this does 
not mean that one can be sure that the correct value is 
between 1.525 sec and 1.555 sec but that the chances are 
even that it lies between these limits. 
Comparing Eq. (1) with Eq. (3) it is found that the probable 
error of the mean of n observations is 1 n  times the 

probable error of a single observation. P .E. = p.e./ n .  For 
example, the result obtained by averaging 9 observations is 
three times as reliable as a single observation and 81 
observations are three times as reliable as 9. Since the 
accuracy increases as the square root of the number of 
observations taken, it is evident that an observer is not 
justified in spending the time required to take a very large 
number of observations. For most experiments 5 or 10 
observations should be sufficient. 
 
V. PROBABLE ERROR-ANOTHER METHOD: The 
probable error may also be computed from the sum of the 
squares of the deviations Σd2. The squares of the deviations 
are given in column IV, Table II. This method is more tedious 
and only slightly more accurate than the method discussed 
in Section IV. The equations used in this method and the 
numerical results for this experiment are given below. where 
the symbols have the same significance they had in Eqs. (1). 
and (3). 
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It is seen that this method gives substantially the same 
probable error as the one used in Section IV. 
It was stated in Section IV that the best average of a series 
of observations is the a.m. It can also be shown that the best 
average is the value which makes Σd2 a minimum. For this 
reason the branch of mathematics which has been employed 
in the study of errors is often called The Method of Least 
Squares. 
 
VI. PERCENTAGE ERROR: In a great many cases one is 
not so much interested in the numerical error as in the 
percent of error. For example, in Section IV it was found that 
the probable error of a single observation is 0.075 sec. It is 
often desirable to express the error in percent of the thing 
being measured. The probable percentage error p.p.e. of a 

single observation is 
.075
1.54

100% or 4.9%; the odds are even 

that an observation will not deviate more than 4.9% from the 
mean. Similarly, the probable percentage error P.P.E. of the 

mean is 
.015
1.54

 100% or .97%. 

 
VII. PROPACATION OF ERRORS: So far this discussion 
has been limited to a study of the errors in a group of 
observations all measuring the same thing, namely, the time 
t required for sound to travel between two points. Since in 
this experiment the observers are interested in the velocity of 
sound, it will be necessary to measure the distance S 
between the two points and compute the velocity v from the 
measured values of t and S. What effect do errors in t and S 
have upon v? Can general laws be formulated governing the 
effect of errors in the several items on the computed result? 
We shall consider only two cases. 
 
    Addition and Subtraction. The probable error of the 
result is the square root of the sum of the squares of the 
probable errors of the separate items. For example, (12.15 ± 
0.03)cm + (8.63 ± 0.04)cm - (6.15 ± 0.05)cm = (14.63 ± 

.07)cm, since 0.032 + 0.042 + 0.052 = 0.07  
 
    Multiplication and Division. When the result is obtained 
by multiplication and division its probable percentage error is 
determined by the application of the following two rules: 
(1) The P.P.E. of the result is the square root of the sum of 
the squares of the P.P.E.'s of the factors. 
(2) In case a factor is raised to the nth power its P.P.E. 
should be multiplied by n. 
For example, let us assume that the density D of a certain 
cylinder is computed from the equation D = M πr 2h  and 
that the P.P.E.'s of M, r, and h are 2%, 3%, and 5%, 
respectively. Then the P.P.E. of D is 8% since 

' 22 + (2x3)2 + 52 = 8 . From this it is clear that a 3% 
error in the radius r will more seriously affect the result than 
a 5% error in the height h. Having determined the P.P.E. of 
the result, the P.E. may readily be computed. 
 
VIII. PROBABLE ERROR WHEN SYSTEMATIC ERROR IS 
PRESENT: In the discussion of probable error above only 
random errors were considered. Systematic errors will 
always be present and in some cases will be sufficiently 
large to affect the reliability of the result. The probable value 
of the systematic error may be determined from a separate 
experiment or, with an experienced observer, may be 
estimated. Calling the probable error of a single observation 
due to random errors r, the probable systematic error r1, the 
probable error of the result due to both causes ro, and the 
number of observations n, it can be shown that 
 

                             ro =
r2

n
+ r1

2                                     (7) 

 
If r and r1 cannot be expressed in the same units, probable 

4 



5 

percentage errors must be used. 
Eq. (7) shows that if n is large it is the systematic error that 
determines the reliability of the result and a very large 
number of observations would not be justified. In many 
experiments r1 is small and only random errors need be 
considered. 
 
IX. GENERAL: In the study of errors we have applied certain 
statistical laws to 26 observations. Actually these laws apply 
accurately only when the number of observations is quite 
large. It is unusual for 26 observations to agree as well with 
theory as the ones given in Table II. To those interested in a 
more rigorous and more complete treatment of errors the 
following books are recommended: 
 
H. M. Goodwin, Precision of Measurements and Graphical 
Methods, McGraw-Hill, 1920; 
 
D. Brunt, The Combination of Observations, Cam-bridge 
University Press, 1931; 
 
G. V. Wendell and W. L. Severinghaus, A Manual of 
Physical Measurements, Privately Printed, 1918. 
 
J. W. Mellor, Higher Mathematics for Students of Chemistry 
and Physics, Longmans Green & Co., 1929. 


