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TORSION PENDULUM 
 

                                 Loθ = − Ia  OBJECT: To determine the rotational inertia of a cylindrical 
disk by means of a torsion pendulum. or  

                                a = −Loθ I                                      (2) METHOD: A uniform wire about a meter in length is firmly 
clamped at its upper end and has attached at the lower end 
a circular disk. By rotating the disk about an axis which runs 
lengthwise through the wire and then releasing the disk, the 
system is set into angular simple harmonic motion, the 
period of which depends on the material and dimensions of 
the wire as well as the rotational inertia of the disk. A 
cylindrical ring is then placed symmetrically over the disk 
and the system set into angular simple harmonic motion. By 
measuring the period and using the computed value of the 
rotational inertia of the ring, the rotational inertia of the disk 
is determined. This value is compared with the value 
calculated for the rotational inertia of the disk. 

 

 
THEORY: Consider along uniform wire rigidly clamped at its 
upper end A and supporting, at its lower end, a circular disk 
whose rotational inertia about an axis through the wire is I 
(Fig. 1). If the disk is rotated through some angle, a restoring 
torque is set up in the wire tending to bring the disk back to 
its equilibrium position. When the disk is released, this 
torque gives the disk an angular acceleration. If a torque L 
acts on a body having a rotational inertia I, it gives the body 
an angular acceleration of a where 
 
                                    L = Ia                                            (1) 
 
Eq. (1) indicates that the angular acceleration which a body 
receives is directly proportional to the torque acting on it and 
inversely proportional to its rotational inertia. This expression 
relating torque and angular acceleration is analogous to 
Newton's second law of motion, f = ma, which deals with 
force and linear acceleration. 
The restoring torque set up in the wire when its lower end is 
twisted through some angle θ  (Fig. 1) depends upon the 
torsion constant of the wire as well as the angle of twist. The 
torsion constant Lo depends upon the dimensions of the wire 
and upon the material of which it is made, i.e., upon the 
shear modulus of the material; this torsion constant Lo of the 
wire is defined as the torque required to twist the lower end 
of the wire through unit angle (one radian). Consider the 
motion of the disk at some instant when the angle of twist is 
II radians and the restoring torque is Loθ . The relationship 
between the restoring torque θoL  and the angular 
acceleration α of the disk at this instant is, from Eq. (1), 

 
where I is the rotational inertia of the disk about an axis 
passing through the wire. The negative sign is used because 
a is positive in the direction of increasing θ , which is 
opposite to the direction of the restoring torque Loθ . Since 
Lo and I are constant for a given apparatus, it follows that the 
angular acceleration for an angular displacement θ  is 
proportional to θ  and in the opposite direction. This is the 
condition necessary for the disk to execute angular simple 
harmonic motion. 
Simple harmonic motion (S.H.M.) is defined as motion in 
which the acceleration is directly proportional to the 
displacement and oppositely directed. Clearly this definition  



                              T = 2π −x a                                   (6) may be applied to either translational or rotational motion. A 
S.H.M. is characterized by its amplitude and either its 
frequency or period. Amplitude is the maximum 
displacement of the body executing S.H.M. from its position 
of rest. Frequency n is the number of complete vibrations per 
second, while the period T is the time for one complete 
vibration. From these definitions of frequency and period it 
follows that 

 
where x is the linear displacement from the equilibrium 
position and a is the linear acceleration of the particle for this 
displacement. 
This expression may be readily transformed into the 
corresponding expression for the period of an angular simple 
harmonic motion.                                    n = 1 T                                           (3) Consider the point Don the periphery of the disk (Fig. 1). 
This point vibrates in the arc of a circle of radius r, the radius 
of the disk. When the angular displacement of D from its 
equilibrium position C is θ , the displacement x of D from C 
is rθ  and the linear acceleration a of D is ra where a is the 
angular acceleration of the point D. Substituting these values 
for x and a in Eq. (6), it follows that the period of the angular 
simple harmonic motion is given by 

 
It is to be noted that the period is the time for one complete 
vibration and is therefore the interval between two 
successive transits in the same direction through any 
reference point. 
There exists a significant relationship between S.H.M. and 
uniform circular motion from which the period of the S.H.M. 
may be obtained. When the motion of a point traveling with 
uniform speed in a circle is projected upon a diameter of the 
circle, the motion of the projection may be shown to satisfy 
the definition of S.H.M. Suppose a particle, shown at A in 
Fig. 2, is moving with uniform speed v) in a circular path of 

 
       T = 2π −x a = 2π −rθ ra = 2π −θ a       (7) 
 
where θ  is the angular displacement (in radians) from the 
equilibrium position and a is the angular acceleration (in 
radians per sec2) for this displacement. From Eq. (2) 

 

 

 
                               −θ a = I Lo                                    (2a) 
 
Hence the period of the S.H.M. is given by 
 
                              T = 2π I Lo                                    (8) 
 
If a circular ring is placed symmetrically over the disk and the 
system set into S.H.M., the period of the vibrations is given 
by an expression similar to Eq. (8) where I represents the 
total rotational inertia of disk and ring about an axis through 
the wire. 
The rotational inertia of a circular disk of mass M and radius 
r about an axis through its center and perpendicular to its 
plane (Fig. 3a) is given by 
 
                               I = 1

2Mr
2                                        (9)  

radius r. The period of rotation T of A is 2πr v . As A 
revolves about the center O, the projection B on the 
diameter of the circle oscillates to and fro with the same 
period. The amplitude of the vibration is the radius r of the 
circle. The particle A has a centripetal acceleration given by 

 
The rotational inertia of a ring of mass M whose inner and 
outer radii are respectively r1 and r2 about an axis through its 
center and perpendicular to its plane (Fig. 3b) is given by 
 
                       I = 1

2M r1
2 + r2

2( )                                (10)  
                       ac = v

2 r = 4π 2r T 2                               (4)  
 APPARATUS: The apparatus consists of the stand used in 

the experiment on Young's modulus, a circular brass disk 
with an index line on its side, a brass ring and a long wire 
(Fig. 4). A timing device such as a stopwatch, a pair of 
calipers and a balance for determining the mass of the disk 
and ring are required. A telescope with across hair in the 
eyepiece is useful for observing the period of the vibrations. 

The component of this acceleration upon the line OB is 
 
             a = −ac cosφ = −acx r = −4π 2x T 2           (5) 
 
The negative sign indicates that the acceleration a is 
oppositely directed to the displacement x which is measured 
outward from the center O. Since T is a constant, it follows 
that the expression given in Eq. (3) satisfies the definition for 
S.H.M. The period of the S.H.M. is given by 

 
PROCEDURE: Firmly fasten the wire in the clamp at the top 
of the stand and attach the other end of the wire to the small 
clamp which has screw threads on it. Securely screw the 
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lower clamp into the disk and arrange the index line on the 
edge of the disk in a convenient position for making 
observations. 

Place the ring concentrically over the disk. Set the system in 
motion as above and determine the period of the torsional 
oscillations. Detach the ring and disk from the wire and 
measure the diameter of the disk and the inner and outer 
diameters of the ring. Determine the masses of the disk and 
ring. 

 

Compute the rotational inertia of the ring using Eq. (10). 
From the measured periods of oscillation of the disk alone 
and of the ring and disk, together with the computed value of 
the rotational inertia of the ring, calculate the torsion 
constant Lo of the wire and the rotational inertia of the disk. 
Compute the rotational inertia of the disk using Eq. (9) and 
give the percentage difference of the two values obtained for 
this quantity.   This may be done by loosening the upper clamp and suitably 

turning the wire. If a telescope is available, set it at a suitable 
distance from the apparatus and focus it on the index line; 
otherwise set a vertical pointer near, but not touching, the 
index line. By these means the central or undisturbed 
position of the disk is indicated. 

QUESTIONS: 1. On which of the following factors does the 
torsion constant Lo depend, and in what ways: (a) the 
diameter of the wire; (b) its length; (c) the material of which 
the wire is made; (d) the modulus of rigidity of the wire? 
    2. Why is the rotational inertia of the ring and disk as used 
together in this experiment equal to the sum of their separate 
rotational inertias?  

 

    3. Does the period of vibration depend on the amplitude? 
Discuss for small and very large amplitudes. 
    4. In observing the time required for a rather slowly 
oscillating torsion pendulum to make a number of 
oscillations, would it be more accurate to record times when 
the disk passed through its equilibrium position or when it 
passed through one of its extreme positions? Explain. 

 
 

Fig. 4. Apparatus for determining the torsion constant of a wire and the 
rotational inertia of a ring. The ring and disk are shown mounted on the 
apparatus which is conventionally used for the determination of Young’s 
modulus. 

 
 
 
Rotate the disk through some small angle and set the wire 
and disk in torsional vibration. Determine the time of fifty 
complete vibrations. Start timing when the disk passes the 
central position moving, say, to the right. Be careful to call 
the first count, when the timing starts, "zero." It is a common 
error to call this "one." Repeat the observation until 
consistent results are obtained for the period of oscillation. 
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