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SURFACE TENSION – RISE IN CAPILLARY TUBE 
 

OBJECT: To determine the value of the surface tension of a 
liquid from the height of rise in a capillary tube. 
 
METHOD: A capillary tube is held vertically with the lower 
end immersed in the liquid whose surface tension is to be 
measured. A comparator (measuring microscope) is used to 
determine the height of rise of the liquid in the tube and the 
inside diameter (bore) of the tube. The surface tension of the 
liquid is computed from the height of rise, the bore of the 
tube, and the density of the liquid. 
 
THEORY: The fact that molecules cling together to form a 
liquid indicates that between the molecules there must be 
attractive forces. When two molecules are close together the 
attractive force is considerable, but when separated by a 
distance equal to a very few times the diameter of a 
molecule the force becomes negligible. For many types of 
phenomena in physics the force between two particles varies 
inversely as the square of the distance. There is plenty of 
evidence, however, that the inverse square law does not 
apply to these intermolecular forces but that the force 
decreases as some higher power of distance. The nature 
and causes of these forces are not completely known but it 
is probable that they are the same kind of forces as those 
involved in chemical bonds.  

 
 
A molecule in the interior of a liquid, A in Fig. 1, is attracted 
equally in all directions by the neighboring molecules and the 
vector sum of all these forces is zero. For a molecule at B on 
the surface, however, this is not true. Since there are 
relatively few molecules in the vapor above the surface the 
resultant is an inward force R perpendicular to the surface. 
Each molecule transferred from the interior to the surface 

must be moved against this force. Since this requires that 
work be done on it, a molecule in the surface layer has more 
energy than a molecule in the interior. The excess free 
surface energy per unit area of surface is called the surface 
tension T of the liquid and may be expressed in ergs per 
square centimeter. This surface layer is only a few 
molecules thick.  
The shaded portion of Fig. 2 represents a liquid surface 
between the U-shaped frame, width l, and the movable rod. 
If the rod is moved to the right a distance d, the area of the 
liquid surface is increased by an amount ld and, since T ergs 
of energy reside in each square centimeter of surface, the 
increase in free surface energy is Tld. The source of this 
energy is the work Fd done by the force F in moving the rod 

 
 

a distance d. Equating the work done by the force F and the 
increase in free surface energy gives 
 
                                 Fd = Tld                                          (1) 
 
from which it follows that 
 
                                   T = F l                                           (2) 
 
This indicates that surface tension which has been 
expressed in ergs per square centimeter may be, and 
usually is, expressed in dynes per centimeter. Not only are 
these two methods of expressing surface tension 



numerically the same but they have the same physical 
dimensions. From the above discussion it is evident that the 
result is the same as if the surface of the liquid were covered 
with an elastic membrane under a tension of T. dynes per 
centimeter. For this reason some authors define surface 
tension as the force with which molecules on one side of a 
one-centimeter line on the surface attract the molecules on 
the other side of the line. This definition is unsatisfactory 
since it gives a false picture of the cause of surface tension. 
It is true that the molecules on one side of a line attract the 
molecules on the other side but this is not strictly a surface 
phenomenon for it would also be true for the interior of the 
liquid. 

 

The forces responsible for surface tension are normal to the 
surface, but these forces manifest themselves as tangential 
forces. Fig. 3 may help in the understanding of the nature of 
these forces and the way in which the normal force R, Fig. 1, 
manifests itself as a tangential force in Fig. 2. A paper strip 

  
surface layer is heated slightly and this heat flows to the 
interior of the liquid. Therefore part of the potential energy of 
the surface molecules is converted into heat and the rest is 
available for doing work on the movable rod, Fig. 2. That part 
of the potential energy of the surface layer that is available 
for doing work is called the free surface energy. 

 

Suppose that a rubber membrane S separates the two parts 
of a box and that the membrane is curved as indicated in 
Fig. 4. It is evident that the pressure on the concave side of 
the membrane is greater than the pressure on the convex 
side. In fact, the difference in pressure may be expressed in 
terms of the tension in the membrane and its radius of 
curvature. In a similar manner the difference in pressure 
between the two sides of a liquid surface may be expressed 
in terms of surface tension and the radius of curvature of the 
surface. This relation is easily derived in the case of a 
spherical surface. Suppose the spherical drop of liquid in 
Fig. 5 has a radius ρ  and is divided into two parts by 
passing an imaginary plane through the center. The upper 
hemisphere is in equilibrium under two sets of forces. The 
pull down due to surface tension acting along the 
circumference of a great circle is 2πρT . The upward thrust 

due to the hydrostatic pressure p inside the drop is πρ 2p . 
Equating these two forces gives 

 
passes over two fixed pulleys and supports a weight W 
attached to a movable pulley. Obviously, if the strip is 
sufficiently strong, the force F required to extend the strip to 
the right depends upon the magnitude of the weight Wand 
not upon the tensile strength of the strip. This analogy is 
helpful but should not be pushed too far. 
Although there is no elastic skin on the surface of a liquid, 
the results are exactly the same and in many cases the 
computations are more simple if surface problems are 
treated from the standpoint of the tension in this equivalent 
elastic skin rather than in terms of surface energy. This is 
done in the discussion that follows. The student should 
remember, however, that the forces responsible for surface 
tension are normal to the surface and that the tension in an 
elastic skin, while mathematically equivalent, is a convenient 
fiction. 

 
                             πρ 2p = 2πρT                                     (3) 
 
from which it follows that 
 
                                 p = 2T ρ                                         (4) 
 
This difference in pressure between the two sides of a 
curved surface may be used to explain the rise of liquids in 
capillary tubes. When the tube U, Fig. 6, is dipped into a 
liquid, the glass wall attracts the molecules of the liquid and 
the liquid surface inside the tube becomes concave. Since 
the pressure just above the surface at d is atmospheric 
pressure B, the pressure just under the surface at d is less 
than B.  At the point of c, however, where the surface is 
plane, the pressure in the liquid is B. It is this difference in 
pressure between points at the same level in a liquid that 
causes the liquid to rise in the tube. The liquid will rise until 

In the discussion above, Fig. 2 was treated as if there were 
only one surface. In the case of a thin film (for example, a 
soap film) there are two surfaces (front and back) but an 
analysis of this case leads to the same conclusions as those 
given above. 
In the development of the theory above, the work done was 
set equal to the change in free surface energy. Free surface 
energy will now be defined. When a surface contracts, the 
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which yields the equation 

 

 

                               T =
rhdg

2 cosa
                                       (6) 

 
from which T may be computed. Since it is extremely difficult 
to measure a, the use of the capillary tube method is usually 
limited to those liquids for which the contact angle is zero. In 
this case (tube W, Fig. 6), the radius of curvature of the 
surface is equal to the radius of the tube and Eq. (6) 
becomes 
                               T = 1

2rhdg                                      (7) 

 
In the discussion above, the meniscus was treated as if it 
were spherical. Since the pressure under the meniscus 
varies with height, the pressure difference on the two sides 
of the meniscus is not constant. This indicates that the 
curvature is not constant and that the surface is, therefore, 
not quite spherical. It can be shown that when this fact is 
taken into account, a more exact relation is given by 
 

                       T = 1
2rhdg 1+

1
3
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h

 
 

 
                             (8) 

 
all points at the same level in the liquid are at the same 
pressure. 

 
which may be written 

Eq. (4) may be used to determine the value of the surface 
tension T of a liquid from the height of rise in a capillary tube. 
Suppose that the liquid in the capillary tube V comes to 
equilibrium after rising a vertical height h, where h is 
measured from the fiat surface of the liquid in the vessel to 
the bottom of the meniscus of the liquid surface in the tube. 
If the angle that the meniscus makes with the wall of the 
tube (contact angle) is a, it follows that ρ = r cosa  a, 
where ρ  is the radius of curvature of the surface and r is the 

                        T = 1
2rdg h +

1
3
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 
 
                              (9) 

 
This is the equation that will be used in this experiment to 
determine T. 
For those students who are interested in a more complete 
treatment of surface tension the following treatises, the first 
two of which contain extensive bibliographies, are 
recommended:  
N. K. Adam, The Physics and Chemistry of Surfaces, Oxford 
University Press, 1938; 

 

N. E. Dorsey, The Investigation of Surface Tension and 
Associated Phenomenon, Bulletin of the National Research 
Council, No.69, 1929; 
F. C. Champion and N. Davy, Properties of Matter, Prentice-
Hall, 1938. 
 
APPARATUS: Comparator, thermometer, capillary tube, 
glass rod, two glass vessels, holder for tube and rod, and 
cleaning solution are required. 
A comparator is shown in Fig. 7. It consists of a low power 
microscope M, mounted on a micrometer slide L, which is in 
turn mounted on a heavy rigid support B. The object under 
observation may be placed on the horizontal surface of B 
and the microscope adjusted so that its image is in the plane 
of cross hairs inside the tube of the microscope. This image 
and the cross hairs are viewed together through the ocular 
(eyepiece) of the microscope. The crank K is attached to an 
accurately cut screw thread and by turning K the microscope 
may be made to slide smoothly along the bed plate on which 
is mounted a scale S. 

 
radius of the tube. From the preceding paragraph it should 
be evident that the pressure at f is B, that the pressure in the 
liquid at e is B - hdg, and that the difference in pressure ρ  
between the two sides of the surface at e is hdg. Substituting 
for p and ρ  in Eq. (4) gives 

In a common form of this instrument the pitch of the screw is 
one millimeter. Therefore, turning the screw one complete 
turn advances the microscope one-millimeter. 

                                hdg =
2T cosa
r

                               (5) 
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 Fig. 7. The Comparator 

 
Since the circular head H is divided into 100 divisions, each 
one of these divisions represents one hundredth of a turn 
and indicates that the microscope has advanced 0.01mm. 
By estimating tenths of a division on H, distances may be 
measured to thousandths of a millimeter. It is customary to 
mark the scale S directly in millimeters. If, therefore, the 
index on the movable slide is between 23 and 24 on scale S 
and the circular scale on the head H reads 16.3, the 
complete reading is 23.163mm. Precautions must be taken 
to avoid error due to "lost motion." To prevent injury to the 
screw it is made to fit loosely in the nut. It will be observed 
that K may be rotated back and forth a considerable distance 
without moving the microscope. It is obvious, therefore, that 
when a set of readings is taken all observations must be 
made with the microscope advancing in the same direction. 
If the screw has been turned too far, turn it back about a half 
turn and again approach the setting from the proper 
direction. 
In using a comparator, first adjust the microscope so that the 
cross hairs are in sharp focus without eyestrain. This is 
accomplished by sliding the ocular in the tube. Next, the 
image is made to coincide with the cross hairs by adjusting 
the distance between the objective (front) lens and the object 
being viewed. This may be done either by moving the object 
or by sliding the microscope tube in its holder. Some 
instruments are provided with a rack and pinion to facilitate 
this adjustment. When the image and the cross hairs 
coincide there should be no parallax. That is, when the eye 
is moved slightly back and forth, perpendicular to the axis of 
the microscope, there is no relative motion between the 
image and the cross hairs. 
 
PROCEDURE: Clean all glassware, including the inside of 
the capillary tube, with chromic acid and rinse thoroughly in 
tap water. Partially fill the glass vessel with water and mount 
the capillary tube C and the glass rod R in the holder P as 
indicated in Fig. 8. The glass rod R is drawn down to a fairly 
sharp point and serves as an index. It should be mounted 
about 5mm above the surface of the water. 
Set the comparator with the scale S vertical and focus it on 
the lowest point of the rod R. Read both scales of the 
micrometer. Carefully add water to the vessel until the 

surface just touches the rod. The reading taken above 
indicates, therefore, the position of the flat surface of the 
liquid. Use the crank K to elevate the microscope somewhat 
above the level of the water in the vessel. Being careful not 
to disturb the vessel or the comparator, shift the holder P 
bringing the tube C into focus in the microscope. Again using 
K, adjust the comparator so that the horizontal cross hair is 
tangent to the meniscus and read the instrument. The 
difference between the two readings is the vertical height h 
that the water rises in the tube. Record the temperature of 
the water. 
Thoroughly dry the tube and vessels and repeat the 
experiment with some other liquid. It is advisable to have the 
meniscus at the same position in the tube as in the previous 
case. This may be done by adjusting the position of the tube 
in its holder. 
Using a file or glass- knife, make a fine scratch at the point 
previously occupied by the meniscus and break the tube at 
this point. Mount the tube vertically and use the comparator 
to make at least five determinations of the inside diameter of 
the tube. Since the tube may not be round, all these 
observations should not be taken along the same diameter 
but should be distributed around the tube. It is very important 
in this part of the experiment that the microscope be 
adjusted for no parallax. If in doubt consult an instructor. 
Use Eq. (9) to compute the values of the surface tension of 
the two liquids. 
 
Optional: Partially fill the capillary tube with mercury and 
measure the length and mass of this thread of mercury. Use 
these observations and the density of the mercury to 
determine r. Compare this value of r with the one previously 
obtained. 
 
QUESTIONS: 1. Show that the two members of Eq. (9) have 
the same dimensions. 
    2. What was the pressure just under the surface of the 
water in the capillary tube? 
    3. Assuming that the surface tension of a soap solution is 
25dynes/cm, compare the pressure inside a small soap 
bubble with the pressure inside a drop of water having the 
same radius. 
    4. Derive Eq. (9) by setting the total pull upward due to 
surface tension around the inside circumference of the tube 
equal to the weight of liquid lifted. 
    5. If the length of capillary tube projecting above the liquid 
in the vessel is less than h, will the liquid overflow from the 
top of the tube? Explain. 
Optional: 6. Soap bubbles of different sizes are blown on two 
clay pipes and the stems of these pipes are connected by a 
short section of rubber tube. Explain the change in the sizes 
of these bubbles. 
    7. If the air is removed from the region above a liquid 
surface there is a slight increase in surface tension. Explain 
why. 
    8. The addition of a small amount of salt changes the 
surface tension of water only slightly but a small amount of 
oil will make a large change. Explain. 
    9. In deriving Eq. (9) it was stated that d is the density of 
the liquid. Actually a is the density of the liquid minus the 
density of the air. Why? 
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    10. Derive Eq. (4) from the change in free surface energy 
of a drop of liquid which is caused to expand slightly. 
    11. A more accurate form of Eq. (8) is 
 

    T = 1
2rhdg 1+

1
3
r
h

− 0.1288
r 2

h2 + 0.1312
r 3

h3

 
 
  

 
 

 
What percentage error was introduced into this experiment 
by neglecting the last two terms? 
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