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SURFACE TENSION – PULL ON HORIZONTAL RING 
 

OBJECT: To determine the value of the surface tension of a 
liquid from the downward pull on a horizontal ring. 
 
METHOD: A horizontal ring is dipped into a liquid and a 
calibrated spring balance used to determine the force 
required to pull the ring out of the surface. From the pull on 
the ring and its mean circumference, the surface tension of 
the liquid is computed. 
 
THEORY: The fact that molecules cling together to form a 
liquid indicates that between the molecules there must be 
attractive forces. When two molecules are close together the 
attractive force is considerable, but when separated by a 
distance equal to a very few times the diameter of a 
molecule the force becomes negligible. For many types of 
phenomena in physics the force between two particles varies 
inversely as the square of the distance. There is plenty of 
evidence, however, that the inverse square law does not 
apply to these intermolecular forces but that the force 
decreases as some higher power of the distance. The nature 
and causes of these forces are not completely known but it 
is probable that they are the same kind of forces as those 
involved in chemical bonds. A molecule in the interior of a 
liquid, A in Fig. 1, is attracted equally in all directions by the 
neighboring molecules and the vector sum of all these forces 
 

 
 

is zero. For a molecule at B on the surface, however, this is 
not true. Since there are relatively few molecules in the 
vapor above the surface the resultant is an inward force R 
perpendicular to the surface. Each molecule transferred from 
the interior to the surface must be moved against this force. 
Since this requires that work be done on it, a molecule in the 

surface layer has more energy than a molecule in the 
interior. The excess free surface energy per unit area of 
surface is called the surface tension T of the liquid and may 
be expressed in ergs per square centimeter. This surface 
layer is only a few molecules thick. The shaded portion of 
Fig. 2 represents a liquid surface between the U-shaped 
frame, width l, and the movable rod. If the rod is moved to 

 
 

the right a distance d the area of the liquid surface is 
increased by an amount ld and, since T ergs of energy 
reside in each square centimeter of surface, the increase in 
free surface energy is Tld. The source of this energy is the 
work Fd done by the force F in moving the rod a distance d. 
Equating the work done by the force F and the increase in 
free surface energy gives 
 
                                 Fd = Tld                                          (1) 
 
from which it follows that 
                                   T = F l                                           (2) 
 
This indicates that surface tension which has been 
expressed in ergs per square centimeter may be (and 
usually is) expressed in dynes per centimeter. Not only are 
these two methods of expressing surface tension 
numerically the same but they have the same physical 
dimensions. From the above discussion it is evident that the 
result is the same as if the surface of the liquid were covered 



with an elastic membrane under a tension of T dynes per 
centimeter. For this reason some authors define surface 
tension as the force with which molecules on one side of a 
one-centimeter line on the surface attract the molecules on 
the other side of the line. This definition is unsatisfactory 
since it gives a false picture of the cause of surface tension. 
It is true that the molecules on one side of a line attract the 
molecules on the other side but this is not strictly a surface 
phenomenon for it would also be true for the interior of the 
liquid. 
The forces responsible for surface tension are normal to the 
surface, but these forces manifest themselves as tangential 
forces. Fig. 3 may help in the understanding of the nature of 
these forces and the way in which the normal force R, Fig. 1, 
manifests itself as a tangential force in Fig. 2. A paper strip 
passes over two fixed pulleys and supports a weight W 
 

 
 

attached to a movable pulley. Obviously, if the strip is 
sufficiently strong, the force F required to extend the strip to 
the right depends upon the magnitude of the weight W and 
not upon the tensile strength of the strip. This analogy is 
helpful but should not be pushed too far. 
Although there is no elastic skin on the surface of a liquid, 
the results are exactly the same and in many cases the 
computations are more simple if surface problems are 
treated from the standpoint of the tension in this equivalent 
elastic skin rather than in terms of surface energy. This is 
done in the discussion that follows. The student should 
remember, however, that the forces responsible for surface 
tension are normal to the surface and that the tension in an 
elastic skin, while mathematically equivalent, is a convenient 
fiction. 
In the discussion above, Fig. 2 was treated as if there were 
only one surface. In the case of a thin film (for example, a 
soap film) there are two surfaces (front and back) but an 
analysis of this case leads to the same conclusions as those 
given above. 
In the development of the theory above, the work done was 
set equal to the change in free surface energy. Free surface 
energy will now be defined. When a surface contracts, the 
surface layer is heated slightly and this heat flows to the 
interior of the liquid. Therefore part of the potential energy of 
the surface molecules is converted into heat and the rest is 
available for doing work on the movable rod, Fig. 2. That part 

of the potential energy of the surface layer that is available 
for doing work is called the free surface energy. 
 A common form of ring for measuring surface tension is 
illustrated in Fig. 4. If this ring is dipped under the surface of 
a liquid and then withdrawn, the surface is pulled up as 
indicated in Fig. 5. The force required to pull the ring out of 
the surface is equal to the weight of t be ring W plus the 
downward pull F due to surface tension.  
Taking account of both the inner and outer surfaces, simple 
theory indicates that the total downward force F due to 
surface tension is given by the equation 
 
                                 F = 2LT                                          (3) 
 
where L is the mean (average of inside and outside) 
circumference. Solving this equation for T gives 
 
                                 T = F 2L                                         (4) 
 
In the derivation of these equations, however, certain facts 
have been ignored which may lead to serious error. An 
inspection of Fig. 5 shows that the pull on the ring is not 
vertically down. Since only the vertical component of this 
force is measured, this would indicate that the true value of F 
is less than that given by Eq. (3). There is, however, another 
factor which tends to produce an error of the opposite sign. 
The pressure on the top of the ring is atmospheric whereas 
the pressure on the bottom of the ring is atmospheric minus 
hdg, where h is the vertical height of the bottom of the ring 
above the level part of the surface of the liquid, d is the 
density of the liquid, and g is the acceleration due to gravity. 
Obviously this factor tends to make F larger than the value 
given by Eq. (3). 
Although these errors are opposite in sign they do not, in 
general, compensate each other and Eq. (4) must be 
changed to read 

                                  T =
F

2L
G                                        (5) 

 
where the correction factor G depends upon the 
circumference of the ring, the size of the wire in the ring, the 
total downward pull on the ring, and the density of the liquid. 
In Fig. 6 the correction factor G, for a ring having a mean 
circumference of 4cm and made of No. 28 B & S gage wire, 
is plotted against the ratio of the force F to the density d of 
the liquid. For a ring having different dimensions the value of 
G may be determined from tables given by Harkins and 
Jordan. * 
 
For those students who are interested in a more complete 
treatment of surface tension the following treatises, each of 
which contains an extensive bibliography, are 
recommended: 
 
N. K. Adam, The Physics and Chemistry of Surfaces, Oxford 
University Press, 1938; 
N. E. Dorsey, The Investigation of Surface Tension and 
Associated Phenomenon, Bulletin of the National Research 
Council, No.69, 1929. 
*J. Am. Chem. Sac., 52, 1751 (1930). 
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APPARATUS: Platinum-iridium ring equipped with stirrup, 
Jolly balance with adjustable platform, small dish, box of 
weights, weight pan, and cleaning solution are required. 
The Jolly balance, equipped for measuring surface tension, 

is shown in Fig. 7. The upper end of the sensitive helical 
spring S is attached to the inner telescoping support tube C. 
This tube may be raised or lowered by turning the knurled 
wheel W at the base. The tube is graduated and its height is 
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read with the aid of the vernier scale V mounted on the fixed 
outer tube. An index hangs freely inside a glass cylinder and, 
when the balance is adjusted for reading, the central line on 
the index coincides with a line etched about the glass 
cylinder. With no load on the spring the wheel W is used to 
bring these two lines into coincidence and the scale reading 
is noted. In a similar manner, a reading is taken with the 
force (or weight) to be measured acting on the spring. 
Obviously, the difference between these two readings gives 
the elongation produced by the force and, if the constant of 
the spring is known, this elongation may be used to 
determine the magnitude of the force. 
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The screw with knurled head J is used to adjust the height of 
the movable platform P. When properly aligned the 
telescoping tubes are vertical and the index hangs freely, not 
touching the side of the glass cylinder. To facilitate this 
 

 
 
 

 
alignment the base of the instrument is equipped with 
leveling screws. 
 
PROCEDURE: Suspend the weight pan from the spring and 
align the apparatus. Using the knurled wheel W, adjust the 
position of the spring support so that the middle line on the 
index coincides with the line on the glass tube. To prevent 
error due to parallax, care must be taken to place the eye at 
the same level as the index at I. Since the line etched on the 
glass cylinder lies in a horizontal plane, when the eye is in 
the correct position the line on the back surface of the 
cylinder is hid by the line on the front. With the weight pan in 
place make five independent observations of the zero 
reading of the balance. Also make five observations of the 
reading of the balance with a one-gram weight in the pan. 
The difference between the averages of these two sets of 
readings is the elongation of the spring produced by a force 

of one gram-weight. Assuming that the spring obeys Hooke's 
law, the elongation e of the spring is proportional to the 
stretching force F or 
                                    F = ke                                            (6) 
 
where the constant of proportionality k is called the constant 
of the spring. Determine the constant of the spring, 
expressing it in dynes per centimeter. Having determined k, 
Eq. (6) may be used to measure unknown forces. 
Care must be taken to remove all traces of grease from the 
ring and dish. Grease is most easily removed from the ring 
by heating it "red-hot" in a Bunsen burner. The dish should 
be cleaned with cleaning solution and rinsed in tap water. 
Make five determinations of the zero reading of the balance 
with the ring suspended from the spring. Fill the dish with 
water, place it on the adjustable platform P, and raise the 
platform until the surface of the water touches the ring and 
pulls it under. Gradually raise the upper spring support by 
turning W until the ring is pulled from the surface. To keep 
the lines at I in coincidence, it will be necessary to use one 
hand to lower the platform while the other hand raises the 
spring support. Make five determinations of the balance 
reading when the pull of the spring is just sufficient to detach 
the ring. Record the temperature of the room. 
Use Eq. (6) to compute the downward pull F on the ring due 
to surface tension. Use the graph, Fig. 6, to determine the 
correction factor G and Eq. (5) to compute the surface 
tension of water. Compute the value of the surface tension of 
water at 20°C. The temperature coefficient for water is -
0.154 dyne per centimeter per degree centigrade; the 
surface tension decreases 0.154 dyne per centimeter for 
each degree rise in temperature. Assume that the 
temperature of the water is the same as the temperature of 
the room. 
Determine the value of the surface tension, at room 
temperature, of other liquids designated by the instructor. 
 
QUESTIONS: 1. If the air is removed from the region above 
a liquid surface there is a slight increase in surface tension. 
Explain why. 
    2. The surface tension of a liquid approaches zero as the 
temperature approaches the critical temperature. Explain. 
    3. In this experiment it is assumed that the temperature of 
the liquid in a shallow vessel is the same as room 
temperature. Discuss the possible source of error involved in 
this assumption. 

Fig. 7.  Jolly Balance with ring and adjustable platform. 

    4. A certain salt when added to water increases the 
surface tension. The concentration of the salt in the surface 
layer is less than in the interior. Explain. 
    5. A drop of mercury rests on a horizontal surface. What 
factors determine its shape? 


