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NEWTON’S LAW OF COOLING 
 

OBJECT: To make a study of Newton's law of cooling, and 
to determine the temperature lag of a cooling body, such as 
a calorimeter or a thermometer. 
 
METHOD: Two similar calorimeters, one blackened and one 
polished, are filled with warm water and placed in 
surroundings of known temperature. Observations of the 
calorimeter temperatures are made at regular intervals of 
time, and temperature-time curves are plotted. A semi-
logarithmic graph of the data is plotted with time represented 
on the uniform scale and difference in temperature between 
the calorimeter and the room on the logarithmic scale. The 
semi-logarithmic curve indicates the probable maximum 
temperature difference over which Newton's law of cooling 
may be said to hold satisfactorily. From the slope of the 
graph, the lag of the calorimeter is determined. 
 
THEORY: Newton's law of cooling is an empirical law which 
states that the rate of change of temperature of a body is 
directly proportional to the difference in temperature between 
the body and its surroundings, provided the temperature 
difference is small. The law may be shown to be consistent 
with a more general law of heat transfer known as the 
Stefan-Boltzmann radiation law, according to which the 
amount of energy radiated by a body per unit time is directly 
proportional to the fourth power of the absolute temperature 
of the body. Representing the time rate of radiation of energy 
by R, the mathematical statement of the law is 
 
                                 R = kAT 4                                         (1) 
 
where T is the temperature on the absolute scale (˚K), A the 
area of radiating surface, and k a constant called the 
"radiation constant" of the surface. 
The value of the constant k depends upon the character of 
the radiating surface. Bodies possess three related surface 
characteristics which are important in the transfer of heat by 
radiation. The reflectivity of a surface is the fraction of the 
incident energy that is reflected. The absorptivity of a surface 
is the fraction of the incident energy that is absorbed. 
Clearly, a body that is a good reflector is a poor absorber, 
and vice versa. A body that absorbs all of the radiant energy 
falling upon it, reflecting none, is called a "black" body. The 
emissivity, or emitting power, of a surface is the amount of 
energy emitted by it per unit area per unit time. This, 
according to the Stefan-Boltzmann law, varies with the 
temperature, and depends upon the radiation constant k of 
the surface. Kirchhoff made the important discovery that the 
ratio of the emissivity to the absorptivity is the same for all 
bodies at any given temperature. This relationship is known 

as Kirchhoff's law of radiation. Thus, a body which is a good 
absorber (and hence a poor reflector) is also a good emitter, 
a black body having the maximum possible emissivity at any 
given temperature. It is evident that the radiation constant k 
of a highly polished metal surface is much less than that of a 
matte surface of low reflectivity. The value of k may be 
expressed in various units, e.g., cal/cm2/sec/ºK4, 
ergs/cm2/sec/ºK4, or watts/cm2/ºK4. The accepted value of 
the black body radiation constant is 1.36 x 10-12 

cal/cm2/sec/ºK4. 
The radiation law as first announced by Stefan in 1879 was 
based upon experimental data. Boltzmann showed from 
theoretical considerations that the law holds strictly only for a 
black body. It is found to hold very closely, however, for all 
ordinary cases of radiation. 
If a body at a temperature T is placed in a room the 
temperature of which is TR, in accordance with the Stefan-
Boltzmann law the net rate of exchange of radiant energy 
between the body and its surroundings is 
 
                          R = kA T 4 − TR

4( )                                  (2) 
 
Equation (2) may be written 
 
     R = kA T − TR( ) T 3 + T 2TR + TTR

2 + TR
3( )              (3) 

 
If the difference between T and TR is small in comparison 
with T and TR, Eq. (3) reduces to the approximation 
 
                        R = 4kATR

3 T − TR( )                               (4) 
 
Since k and A are constants, if TR remains constant during 
the heat exchange, 
 
                            R = K T − TR( )                                    (5) 
 
where the constant K = 4kATR

3 . Equation (5) indicates 
that the rate of heat exchange by radiation is approximately 
proportional to (T - TR), provided this difference is sufficiently 
small. If T > TR, R is positive, indicating that the body is 
emitting more radiation than it receives; if T < TR, the 
resulting negative sign of R represents the fact that the body 
is absorbing heat from the room. Although the foregoing 
treatment is based upon the Stefan-Boltzmann law, and 
hence considers only energy exchanges due to radiation, in 
practice a similar relationship is found to hold when 
exchanges due to conduction and convection are included, 



                               D = Doe
−t L                                      (13) provided the effects of conduction and convection are 

relatively small. In this case, of course, the constant K 
contains conduction and convection factors as well as the 
radiation constant k. 

 
Equation (13) shows that the temperature difference 
between a body and its surroundings is an exponential 
function of the time. At a certain time when t = L, 

e−t L = e−1 =
1
e

 and Eq. (13) becomes 

The time rate of gain or loss of heat which a body undergoes 
is directly proportional to its time rate of change of 
temperature dT /dt and depends upon its thermal capacity 

 according to the equation c ⋅m
 

                        D =
1
e
Do (when t = L)                             (14) 

                           
  
R = ∓c ⋅m d±

T
dt

                                   (6) 
 

 This particular value of t is called the "lag" of the system, 
which is defined as the time required for the temperature 
difference to become one eth (about 36.8%) of the initial 
difference. 

where c is the specific heat and m the mass of the body. 
Since a positive value of R corresponds to a loss of heat by 
the body and a consequent fall in temperature, and since, 
furthermore, a decreasing temperature is indicated by a 
negative value of dT /dt, the signs of the two sides of Eq. (6) 
are always opposite. Then from Eqs. (5) and (6), 

A method of determining the lag of a system, such as a 
calorimeter or a thermometer, can be obtained from an 
analysis of Eq. (13). Taking the common logarithm of both 
sides yields  

                     K T − TR( )= −c ⋅m
dT
dt

                            (7)                 log10 D = log10 Do −
t
L

log10 e                   (15) 

or  

                            T − TR = −L
dT
dt

                                 (8) Since e = 2.718 and logl0e = 0.434, Eq. (15) becomes 
 

                 log10 D = log10 Do −
0.434t
L

                    (16)  
where L = c ⋅m K . The constant L will later be seen to 
have a special significance. Equation (8) is a mathematical 
statement of Newton's law of cooling. It states that for a 
given temperature of the surroundings, the rate of 
temperature change of a body is (a) directly proportional to 
the temperature difference (T - TR) between the body and its 
surroundings, (b) directly proportional to the radiation 
constant k of the surface, and (c) inversely proportional to 
the thermal capacity of the body.  c ⋅m

Solving for t, 

           t =
L

0.434
log10 Do −

L
0.434

log10 D               (17) 

or 
                           t = A − Blog10 D                               (18) 
 
where A and B are constants, viz., 

Separation of the variables in Eq. (8) gives  

        A =
L

0.434
log10 Do      and     B =

L
0.434

         (19) 
 

                             
dT
T − TR

=
−dt
L

                                    (9) 
 
A semi-logarithmic graph of Eq. (18) yields a straight line of 
slope B. From the slope of an experimental graph of t versus 
log10D, the lag L can be determined. Temperature lag is an 
important concept, particularly in the measurement of 
temperature where there is a lag between the temperature of 
the instrument and that of the body whose temperature is 
being measured. The lag of a thermometer depends upon its 
insulation and upon the nature of the contact between the 
thermometer and its environment. For example, in the case 
of the thermoelectric thermometers used on automobiles to 
indicate the motor temperature, the lag depends upon the 
conductivity of the cylinder walls and the location of the 
thermocouple in the engine block. An interesting application 
of the problem also arises in the field of medicine in 
connection with recording rectal thermometers. The lag of a 
thermometer can be measured by the method described 
above. For many practical purposes the value of e may be 
taken as approximately equal to 3. Therefore, at the end of 
time intervals t1 = L, t2 = 2L, t3 = 3L, etc., the differences 
between the desired temperature and the thermometer 
reading are approximately D0/3, D0/9, D0/27, etc. Thus, when 

 
Integration of Eq. (9) yields 
 

                     loge T − TR( )= −t
L
+ C                           (10) 

or 
           T − TR = e

−t L( )+C = ec ⋅ e−t L = C1e
−t L           (11) 

 
When t = 0, T = To where To is the initial temperature of the 
body. Hence the constant C1 = To − TR  and Eq. (11) may 
be written 
                      T − TR = To − TR( )e−t L                           (12) 
 
Representing the initial temperature difference To - TR 
between the body and its surroundings by Do and the 
difference T - TR at any subsequent time by D, Eq. (12) 
becomes 

2 



the initial temperature difference Do between the 
thermometer and its surroundings is small, any thermometer 
will assume (practically) the temperature of its surroundings 
after only a few time intervals of the value L. The actual time 
required will, of course, vary with different thermometers 
depending upon the value of the lag L, hence the importance 
of this constant in thermometry. 
 
APPARATUS: The apparatus, represented diagrammatically 
in Fig. 1 and illustrated in Fig. 2, is essentially a double 
radiation calorimeter in which a polished tubular calorimeter 
cup A and a blackened one Bare suspended side by side 
from two holes in the cover of a vessel V. Surrounding the 
calorimeter cups and attached to the asbestos board cover S 
by threaded flanges are two cylindrical shields C and D. In 
use, the outer vessel is filled with water at room temperature. 
The calorimeter cups are thus insulated by a "dead air' 
space and by a water jacket. The temperatures of the liquids 
in the calorimeter cups are indicated by thermometers TA 
and TB inserted through rubber stoppers in the calorimeter 
cups. These thermometers, and one in the water jacket, 
should be graduated in tenths of a degree from 0 to 50° C. 
Accessory apparatus consists of a stopwatch or a clock with 
a sweep seconds hand, a Bunsen burner, a 500mL beaker, 
towels, Cartesian coordinate paper and semi-logarithmic 
paper. 

 
 
PROCEDURE: 
Experimental: Locate the apparatus in apart of the 
laboratory that is free from drafts and not near radiators. 
With the cover S and the cylindrical shields C and D in place, 
fill the outer vessel V with water at room temperature. (Note: 
It is a good plan to keep water standing in the water jacket at 
all times instead of refilling it each time the experiment is 
performed; this precaution makes it certain that the 

temperature of the water jacket is the same as that of the 
room.) Support a thermometer in the water jacket in such 
away that it can be read conveniently and quickly. The 
reading of this thermometer gives the room temperature (in 
degrees centigrade). The use of the water jacket benefits the 
experiment in two ways: (a) it makes it possible, by fixing the 
temperature of the surroundings, to determine room 
 

 
 Fig. 2. Radiation Calorimeter 
 
temperature definitely, and (b) by virtue of the high thermal 
capacity of water, it keeps the surrounding temperature 
nearly constant during the experiment. 
Fill the calorimeter cups A and B to within about 2cm of the 
top with water at about 50°C. Place them in position and 
insert the stoppers and thermometers. Read and record the 
centigrade temperatures of the cups A and B at intervals of 
one minute until the temperature of each has fallen to within 
10° of room temperature. If a student is working alone, one 
thermometer should be read on the minute and the other on 
the half minute. When two students are working together, it 
is convenient to place the apparatus in the center of the 
table with the observers on opposite sides. Each observer 
then reads one of the thermometers. Since the polished 
calorimeter cools more slowly than the blackened one, 
observations on the former must be continued longer than 
on the latter. The temperature of the water jacket should be 
recorded at least every two minutes. Record the data as 
shown in Table I. 
 
Analysis of Data: 
Required Analysis: 1. On the same sheet of Cartesian 
coordinate paper, plot the data for both calorimeter cups with 
temperature as the ordinate and time as the abscissa 
(columns 3 and 4 versus column 1). 
    2. Compute the temperature difference DA = TA - TR for 
the blackened cup A and enter in column 5 of the table. Plot 
a semi-logarithmic curve of the data which appears in 
columns land 5 with time units indicated on the uniform scale 
and temperature differences on the logarithmic scale. (A 
discussion of logarithmic and semi-logarithmic graphs is 
given in the General Instructions sheet on Graphs.) 
Determine the slope of the portion of the curve 
corresponding to the latter part of the run. From the slope 
compute the lag L. From the curve determine the time t 
corresponding to the temperature difference Do/e and 
compare with the value of L. 
 
Optional Analysis: 1. Repeat the analysis of Part 2 above 
for the cup B and compare the values of the lag L for the 
blackened and polished cups. 
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    2. The differences obtained by subtracting each reading in 
columns 3 and 4 from the reading immediately following it 
give the temperature changes that occurred in the 
corresponding interval of time, i.e., in one minute. These 
differences are, therefore, the rates of cooling ∆T ∆t  in 
degrees per minute at the middle of the corresponding time 
intervals. Plot a curve of the rate of cooling versus the 
temperature for each of the calorimeters. Discuss the 
physical significance of these curves. Explain the meaning of 
the intercepts produced by the intersection of the curve 
(extended) with the coordinates axes. In what way are these 
curves related to the curves plotted in Part 1 of Required 
Analysis? 

    6. What is the lag of a clinical thermometer if it must be 
left in the mouth of a normal patient for 3 minutes in order to 
register to 0.2° F, assuming a room temperature of 70°F? 
 
 

    3. Determine the mass mA of the calorimeter cup A and 
the mass mw of the water that it contains. From the known 
values of the specific heats of water and copper, calculate 
the thermal capacity of the calorimeter and contents. From 
this and the average rate of cooling over the first ten 
minutes, compute the heat lost by the cup A in that time. 
 
QUESTIONS: 1. What do the cooling curves for the two 
calorimeter cups show about the respective radiation 
constants? Explain how these curves are consistent with 
Kirchhoff's law. 
    2. What does the semi-logarithmic graph of t vs. D show 
about the temperature range over which Newton's law of 
cooling is a satisfactory approximation? 
    3. Compute the maximum percentage error that would be 
introduced in this experiment if the energy R radiated per 
second were computed by Eq. (4) instead of by Eq. (2). 
    4. Explain how the lag of a calorimeter can be obtained 
from the cooling curves of Part 1 of Required Analysis when 
the initial temperature and the room temperature are known. 
Determine the values of L in this way and compare with the 
other determinations. 
    5. The lag of a certain thermometer is 30 seconds. If the 
initial temperature difference between the thermometer and 
its surroundings is 10°C, how long will it take for the 
thermometer to indicate the correct temperature within 
0.1°C? 
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