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COMPOSITION AND RESOLUTION OF CONCURRENT FORCES BY 
VECTOR METHODS 

 
OBJECT: To study the composition and resolution of 
concurrent forces as examples of vector quantities. 
 
METHOD: Concurrent forces acting on a body are used as 
examples of vector quantities. These forces are represented 
by vectors. The resultant and equilibrant of several sets of 
such known forces are determined by both graphical and 
analytical methods. These results are tested on a force table 
as a check on the first condition for the equilibrium of a rigid 
body. 
 
THEORY: Measurable quantities may be classified as either 
(1) scalar quantities or (2) vector quantities. A scalar quantity 
has magnitude only, but a vector quantity has both 
magnitude and direction. For example, since to specify 
completely the velocity of a body it is necessary to state not 
only how fast it is traveling but in what direction it is going, 
velocity is a vector quantity. However, the mass of a body is 
completely specified by a magnitude, and hence mass is a 
scalar quantity. Since the weight of a body is the force with 
which it is attracted by the earth, weight has a downward 
direction and thus is a vector quantity. Since weight and 
mass are different physical concepts, they should not be 
measured in the same units. The gram is a unit of mass. The 
force with which the earth attracts a one-gram mass at a 
standard location sometimes is called a "gram-weight” of 
force. * 
 
*Since weight is proportional to mass in any given locality, 
this experiment is not affected by the slight variations 
consequent to laboratory conditions 
 
In order to add scalar quantities, one has merely to make the 
algebraic addition. When one wishes to add two vector 
quantities, the process is more difficult because their 
directions must be considered. The vector sum of two vector 
quantities is the single vector quantity that would produce 
the same result as the original pair. 
The addition of vector quantities is greatly simplified by 
representing the vector quantity graphically. A vector is the 
line segment whose length represents the magnitude of a 
vector quantity and whose direction is that of the vector 
quantity. The sense along the line is indicated by an arrow. 
For example, a force of 100lb. acting at an angle of 30° 
above the horizontal may be represented by the line OA. Fig. 
1, which is 5 units long and has the correct direction. Each 
unit of length thus represents 20lb. 
When vectors do not have the same line of action, their 
vector sum is not their algebraic sum but a geometric sum. 

This geometric sum may be determined by either graphical 
or analytical methods. Graphical methods are simple and 
direct but are limited in precision to that obtainable by 
drawing instruments. Analytical methods have no such 
inherent limitations. In this experiment both graphical and 
analytical methods will he applied to forces as examples of 
vector quantities, but the same methods apply to all vector 
quantities. 
The vector sum, or resultant, of a set of forces is the single 
force that will have the same effect, insofar as motion is 
concerned, as the joint action of the several forces. 

 
 

Vector Summation by Graphical Methods: As an example 
of vector addition let us consider the case of two forces 
acting on a body in such a direction that the forces are 
concurrent, that is their lines of action, if projected would 
intersect at a point. The vectors OA and OB representing 
two such forces are shown in Fig. 2. Their vector sum or 
resultant R, is found by constructing a parallelogram having 
the two vectors as sides and drawing the concurrent 
diagonal, as shown in Fig. 3. This diagonal vector R 
represents in magnitude and direction the single force that is 

 
 

equivalent to the origina1 pair, that is their vector sum. When 
the resultant of more than two vectors is to be obtained 
graphically a polygon method is used. This is illustrated in 
Fig. 4. The vector A is first constructed by the use of a 



chosen scale and reference direction. Then, from the head 
of A, the vector B is drawn. It is clear that the vector M is the 
resultant of vectors A and B, since M would be the 
concurrent diagonal of a parallelogram if such a 
parallelogram had been drawn, as was done in Fig. 3. 
Similarly, it follows that the vector R is the resultant of M and 
C or of A, B, and C. When the resultant of several forces is 
required this method is simpler than the parallelogram 
method. It should be noted that when the parallelogram 
method is used, the arrows, with their tails together, all 
radiate from a common point. But in the polygon method the 
tail of the second arrow coincides with the head of the first, 
etc. 

 

 
 

Summation of Vectors by Analytical Methods: The 
resultant of two vectors may be determined analytically by 
the use of the trigonometric laws of sines and cosines. 
Consider the vectors A and B in Fig. 5. The magnitude of the 

resultant R can be obtained by the application of the law of 
cosines: 
                   R2 = A2 + B2 + 2ABcosβ                        (1) 

 
 

The direction of R can then be obtained from the law of 
sines: 

                                 
Sinφ
Sinβ

=
B
R

 

Since sinβ  = sinθ , 

                             Sinφ =
B
R

sinθ                                    (2) 

 
Components of Vectors: Any single force may be replaced 
by two or more forces whose joint action will produce the 
same effect as the single force. These various forces are 
said to be components of the single force. The most useful 
set of components is usually a pair at right angles to each 
other, as shown in Fig. 6. 
The force B is the resultant of Forces Bx and By. Therefore 
conditions are unchanged by replacing the single force B by 
forces Bx and By, called their X- and Y- components. It is 
obvious from Fig. 6 that Bx = B cosβ  and By = B sinβ . 
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Component Method for Addition of Vectors: Fig. 7 
illustrates the component method of computing the resultant 
of A, B, and C. The X- axis is so chosen that it coincides 
with the vector A, and the vectors B and C are resolved into 
 

 
 

 
X- and Y-components. The three forces A, B, and C have 
been replaced by five forces (A has no Y- component). The 
slim of the component along either axis may be computed by 
algebraic addition. Calling the sum of the X-components Fx 
and the sum of the Y-components Fy, it follows that the 
resultant R is given by the equation 
 
                                                         (3) R2 = (Fx )

2 + (Fy)
2

 
and that the angle φ - the angle that R makes with the X-axis 
may be determined from the equation 
 

                                 tanφ =
Fy
Fx

                                       (4) 

 
Equilibrium: Many problems that concern the physicist and 
engineer involve several forces acting on a body under 
circumstances in which they produce no change in the 
motion of the body. This condition is referred to as 
equilibrium. The body does not necessarily have to be at 
rest, but its motion must retain the same velocity; hence both 
magnitude and direction of motion are unchanged. 
 
First Condition for Equilibrium: Insofar as linear motion is 
concerned, a body is in equilibrium if there is no resultant 
force acting upon it, that is if the vector sum of all the forces 
is zero. This statement is called the first condition for 
equilibrium. This condition is satisfied if the vector polygon 
representing all the external forces acting on the body is a 
closed figure. Analytically this condition is satisfied if each 
set of rectangular components of the forces separately adds 
to zero, or 
                              Rx = ∑ Fx = 0                                    (5) 
 
                              Ry = ∑Fy = 0                                    (6) 
 
Equilibrant of a Set of Forces: This is defined as that 
single force that must be applied to keep a body in 
equilibrium when it is under the action of other forces. This 

equilibrant (sometimes called anti-resultant) must be equal in 
magnitude and opposite in direction to the resultant of the 
applied forces. In a vector polygon the equilibrant would be 
represented by the vector that closes the polygon. In Fig. 4 
the equilibrant for the forces A, B, and C would be the line R 
but with the arrowhead directed toward the origin. 
 
APPARATUS: Force table, Fig, 7; scale pans; set of slotted 
masses; level tester; ruler; protractor, graph paper. 
The force table has a circular top, calibrated in degrees, and 
mounted on a tripod base, equipped with leveling screws. 
The body whose equilibrium is under study is the ring at the 
center of the table. The central pin holds this ring in position 
when the weights are unbalanced. The forces acting on this 
ring are the tensions in the cords. If the friction in the pulleys 
is negligible the tensions in the cords are equal to the 
downward pull of gravity on the suspended masses. Each 
pulley clamp has an index by means of which the direction of 
the corresponding force may be read on the circular scale. Fig. 7. Force table. 
 
PROCEDURE: Each student will select or be assigned one 
of the problems in Table I (or a similar problem) by the 
instructor. 
    1. Using the parallelogram method, determine graphically 
the resultant and equilibrant of A and B. Choose a scale 
such that the finished vector diagram will almost fill the sheet 
of paper. Use a sharp pencil and construct as accurately as 
the instruments will permit. Check the results on the force 
table. 
Set up the two given forces by adding to the mass of the 
scale pans the appropriate slotted masses. Apply the 
equilibrant force that was obtained from the parallelogram 
figure. Be sure that the strings are lined up on the ring so 
that their lines of action will intersect at the center pin. Try 
displacing the ring and noting its return. If it does not return 
to the center adjust the equilibrant force to produce 
equilibrium. Record the final value of this force and compare 
it with the value found from the vector diagram. Ask the 
instructor to check your final results. 
    2. Calculate the resultant and equilibrant of the two given 
forces used in step 1 by the use of the laws of sines and 
cosines. Check the result of these calculations on the force 
table and also compare them with the values determined by 
the graphical parallelogram method. 
    3. Select or obtain from the instructor a set of three forces 
and determine graphically their resultant and equilibrant by 
using the vector polygon method. Test your results on the 
force table. 
    4. With the same three given forces used in Step 3 
calculate their resultant and equilibrant by mean is of the 
analytical component method. Compare this result with the 
values determined from the vector polygon method. 
 
QUESTIONS: 1. The forces in this experiment act on a ring 
but are said to be concurrent. Explain. If the cords were 
attached rigidly to the ring would the forces necessarily be 
concurrent? 
    2. Indicate whether each of the following is a vector or 
scalar quantity: speed, velocity, mass, weight, work, torque, 
volume. 
    3. A hammock is supported by two hooks at the same 
level. A man is seated in this hammock. Under what 
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conditions will the pull on each hook be equal to the man’s 
weight? 
    4. A body, weight W, is attached by a string, length l, to a 
hook on a vertical wall. A horizontal force F acting on the 
body holds it at a distance d from the wall. Derive the 
equation which gives the force F in terms of W, l, and d. 
    5. If two forces A and B are in line the resultant isA ± B . 
Show how this follows from Eq. (1). 
    6. Mention a few familiar examples from everyday life of 
concurrent forces in equilibrium. 
    7. Since the scale pans used with the force table have 
equal weights would it be safe to ignore these weights in this 
experiment? Explain. 
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