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ENERGY TRANSFORMATIONS IN MULTIPLE COLLISIONS 
(LINEAR AIR TRACK) 

 
OBJECT: To study energy transformations in multiple 
collisions of objects on a linear air track and to relate the rate 
of energy change to a Die-away Curve. 
 
METHOD: An object floating on a linear air track is made to 
collide with several different materials. Upon impact the 
object rebounds and recollides several times, reaching a 
particular height for each rebound. Heights of successive 
rebounds are measured, and the coefficients of restitution 
are computed. Next, Die-away Curves are drawn from these 
data to show the rate of energy transformation. The curves 
then are related to other decay processes. 
 
THEORY: A collision is characterized by a relatively large 
force acting on each colliding body for a short time. When a 
moving automobile crashes into a concrete bridge abutment, 
its recoil speed is less than the striking speed. The crushed 
fenders are evidence that a large force was involved in the 
collision and that a portion of the kinetic or mechanical 
energy which the car had before impact was "lost" in doing 
work to deform the metal. Similarly when a ball is dropped 
onto a hard surface, it will not rebound to its initial height. 
Repeated rebounds of the ball will raise its temperature 
sufficiently to show that there was a transformation of 
mechanical energy into heat energy. 
    Types of collisions. Even though there is a conservation of 
total energy in every collision, mechanical energy is always 
lost (transformed) during collisions of ordinary bodies. Such 
collisions, called inelastic collisions, are the proper study of 
this experiment. 
The fraction of the mechanical energy transformed into non-
mechanical energy in a collision varies from 0 to 100%. A 
steel ball striking a hardened steel block may retain up to 
90% of the kinetic energy it had on impact. A wood ball 
striking the same block retains a much smaller portion. 
The single terrestrial exceptions to the inevitable loss, or 
transformation, of energy during collisions are observed in 
the case of collisions between certain atomic and subatomic 
particles. In these collisions there is a conservation of kinetic 
energy, hence the collisions are perfectly elastic. (These 
particles do not come into physical contact in the usual 
sense; they interact through electrical and magnetic forces.) 
A similar but not identical type of collision is that which is 
involved in the conduction of sound waves. Since sound can 
be propagated over very long distances, many, many 
molecules must be involved in the process of colliding with 
their neighbors to transmit the sound impulses. If an impulse 
can be so transmitted through such a large number of 

molecules, the collisions themselves must approach the 
condition of near-perfect elasticity. 

 
 

At the other extreme, a perfectly inelastic collision requires 
the complete transformation of mechanical energy; there is a 
zero rebound velocity after impact. A ball of putty dropped 
onto a steel plate shows no apparent rebound. The 
permanent deformation of the putty sphere indicates that the 
kinetic energy which it possessed on striking was used to 
rearrange the structure of the sphere. Any head-on collision 
where the colliding bodies lock together is a perfectly 
inelastic collision. A bullet captured by the fixed wood block it 
has penetrated is an example of a perfectly inelastic collision 
if both block and bullet are motionless after the collision. 
The three types of collisions discussed above are 
represented in Fig. 1, which depicts the rebound of spheres 
of different elastic characteristics dropped onto a very 
massive hard surface. Figure 1 (a) shows no loss of kinetic 



energy consideration, mgy = 1/2mv2 or v ∝ y  energy; the multiple rebound heights are all equal, hence 
this is a perfectly elastic collision. Figure 1 (c) shows a 
perfectly inelastic collision with zero rebound. Figure 1 (b) is 
a typical inelastic collision in which the height of each 
successive rebound is less than that of the preceding one, 
thus indicating that mechanical energy is transformed in 
each collision. 

    Multiple rebounds. Figure 1 (b) shows the multiple 
rebounds typical of a spherical object striking a hard fixed 
surface. The rebound height y1 following the first impact is 
drawn to be approximately 0.8 of the initial height yo from 
which the ball fell. This is expressed by y1 = yo (p), where (p) 
in this case is 0.8. Making the logical assumption that in 
succeeding rebounds the ratio of the height of rebounds to 
the height of drop also will be (p), one may write for the 
second impact 

    Coefficient of restitution. In all collisions the momentum of 
the system is conserve, that is, 
 
                      mu +MU =mv + MV                            (1) 

                     y2 = y1 p( ) = yop( ) p( )= yp2   
where m and M are the masses of the colliding bodies; and 
u, U, v, and V are their respective velocities before and after 
the collision. See Fig. 2. 

 
Similarly y3 = yop3, leading to the general equation 
 

 

                                  yn = yop
n                                        (6) 

 
where n is the number of the successive multiple rebound. 
Thus, to solve for the rebound height after five impacts, 
accepting an initial height yo = 90cm and p = 0.8, then y5 = 
90cm (0.8)5 = 29.5cm. The graph of Fig. 3 shows the 
computed rebound heights of this bouncing ball for the first 
fourteen successive impacts. Note that approximately half of 
the kinetic energy is lost in the first three impacts. 
Plotting the amplitude changes of a vibrating steel spring 
would give a graph of much the same formulas Fig. 3.  

  
The kinetic energy may be totally, partially, or not at all 
conserved in the collision. Expressed in equation form, this 
statement becomes 
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(in which ≤  reads equal to or less than). Combining Eq. (2) 
and Eq. (1) gives 
                           v                                  (3) − V ≤ − u −U( )
 
Equation (3) states that the relative velocity of the colliding 
bodies after collision is equal to or less than the relative 
velocity before impact. 
The last equation is conveniently expressed by the ratio 
 
                        ( )v − V U − u( ) = e                                (4) 
 
where e, the constant for a given collision, is called the 
coefficient of restitution. The value of e varies from e = 1 for 
a perfectly elastic collision to e = 0 for a perfectly inelastic 
collision. 
When the collisions are comparable to the behavior of the 
rebounding spheres of Fig. 1, where U = 0 and V = 0, Eq. (4) 
assumes the simple form 
 

                        v −u( ) = e = y1 y                            (5) 
 
where y and y1 are respectively the initial and rebound 
heights for that impact. Equation 5 follows from the free fall 
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The same pattern can be observed in all physical processes 
in which something is changing at a rate which is 
proportional to the magnitude of a variable which is 
changing. 
    The Die-away Curve. Equation 6 is particularly application 
cases were the independent variable is time, that is, when 
the transformation or decay proceeds gradually. Two of the 
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decays to No/2 (45 milligrams of unchanged material) after 
an elapsed time of 3.05 years. This, then, is the half-life of 
that particular radioactive substance. Half of the unchanged 
material remaining at the end of 3.05 years will, in turn, 
undergo radioactivity in the next 3.05 years. Note that the 
abscissa time intervals for successive half-lives are all the 
same. 
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    The linear Air-Track. To apply the theory given, the fall
and rebound of the colliding body must occur under a
 discharges through a very high resistance 
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 satisfying answer, however, can be given if the 
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 of the substance. Note that in Fig. 4 the initial 
dioactive material No (assumed 90 milligrams) 

condition of essentially zero-resisting force between impacts. 
Dropping an object directly onto a massive hard surface 
results in a succession of rebounds which are too rapid to 
permit visual reading of successive rebound distances. 
It is possible, however, to take these readings on a linear air 
track, where the resistance offered to the "falling" object 
(glider) between impacts is essentially zero, and the 
rebounding object reverses direction at its successive upper-
most positions slowly enough to permit the visual reading of 
these positions. 
 
APPARATUS: Linear air track and its source of compressed 
air, (Fig. 5 and Fig. 6); glider to serve as the bouncing body; 
rubber band and steel spring, attached to the air track, into 
which the glider impacts. 
 

 
 
 

 
Fig. 5. Basic setup for making collision measurements on the Cenco Linear 

Air Track.

The linear air track is shown in Fig. 5. Air from the 
compressed air source rushes out of the many small holes of 
the air track to support the glider. The glider floats along the 
slightly elevated track on a cushion of air, being restrained in 
its motion only by the negligibly small resistance of the 
surrounding atmosphere. 
 
PROCEDURE: Place the glider on the horizontally 
positioned air track. Apply only sufficient air pressure to 
make the glider float. Make any transverse adjustments of 
the track necessary for the glider to move along the track 
with no metal-to-metal contact. 
    (1) Place a rubber band on the rebound frame and attach 
the frame firmly to the air track. Elevate the other end of the 
track about 1.5cm. Release the glider from the elevated end 
of the track and note the maximum height of its successive 
rebounds. If there is any indication that the glider does not 
move freely, make additional adjustments of the track. 
Releasing the glider at the top end of the track, read the 
rebound distances of the glider on successive rebounds. 
These distances are proportional to the vertical height 
through which the glider falls. It is suggested that one 
student read the positions and call out the values while his 
partner records them. 
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Fig. 6. Cenco Student Air Track and its experimental accessories.

 
    (2) Replace the rubber band with a steel spring and repeat 
the above. 
    (3) Qualitative test. Substitute a material of your choosing 
on the rebound frame and note the elasticity on impacts. 
Using the data obtained in steps (1) and (2) above proceed 
as follows for each step: 
        (a) Construct a rebound graph comparable to that 
shown in Fig. 3. 
        (b) Add the associated "Die-away Curve." 
        (c) Compute the coefficient of elasticity involved in 
these collisions. 
        (d) Solve for the percent loss in kinetic energy before 
and after impact for each of the first four impacts. What 
conclusions can be drawn from these results? 
        (e) Assuming that the "Die-away Curve" applies to a 
test on a radioactive material, and using milligrams and 
years for the x and y axis respectively shown in Fig. 4, what 
is the half-life of the substance? How long would it take for 
this substance to lose 90% of its radioactivity? 
 
QUESTIONS: 1. A ball falls from an initial height h and 
strikes a massive steel block. It rebounds to a height of h/2. 
What is the ratio of the striking velocity of the ball to its 
rebound velocity? 
    2. The coefficient of restitution e in a collision is 0.5. What 
percent of the striking kinetic energy is transformed in the 
collision? 
    3. Two masses m1 = m2 have velocities of approach (v) 
and (-v). What is the momentum of this system before 
impact and after impact for a perfectly elastic collision? For a 
perfectly inelastic collision? 
    4. Two automobiles each of mass m, traveling at the same 
speed, one west and the other north, collide and lock 
together. Is there a total transformation of the kinetic energy 
in this collision? Explain the answer given. 
    5. An atom of mass m and velocity v collides with an atom 
of mass m at rest. In another encounter the atom of mass m 
and velocity v collides with an atom of mass 2m at rest. 
Show that the striking atom does not retain the same amount 
of kinetic energy in the two collisions. 
    6. The intensity of parallel light of wavelength λ  is 
reduced to half value after penetrating 100 feet of fog. What 
is the intensity at a distance of 150 feet from the source? 
    7. Plotting Fig. 3 for the bouncing ball using height of 
rebound versus time would give a different curve. Why? 
    8. If the elevation angle of the air track were doubled, 
would the value of e obtained in this experiment still be the 
same? Why or why not? 
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